Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • Educational Assets
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

What do memories look like?

By R&D Editors | June 20, 2013

A living neuron in culture: Green dots indicate excitatory synapses and red dots indicate inhibitory synapses. Image: Don ArnoldOscar Wilde called memory “the diary that we all carry about with us.” Now a team of scientists has developed a way to see where and how that diary is written.

Led by Don Arnold and Richard Roberts of the Univ. of Southern California (USC), the team engineered microscopic probes that light up synapses in a living neuron in real time by attaching fluorescent markers onto synaptic proteins—all without affecting the neuron’s ability to function.

The fluorescent markers allow scientists to see live excitatory and inhibitory synapses for the first time and, importantly, how they change as new memories are formed.

The synapses appear as bright spots along dendrites, the branches of a neuron that transmit electrochemical signals. As the brain processes new information, those bright spots change, visually indicating how synaptic structures in the brain have been altered by the new data.

“When you make a memory or learn something, there’s a physical change in the brain. It turns out that the thing that gets changed is the distribution of synaptic connections,” said Arnold, assoc. prof. of molecular and computational biology at the USC Dornsife College of Letters, Arts and Sciences, and co-corresponding author of an article about the research that appears in Neuron.

The probes behave like antibodies, but they bind more tightly and are optimized to work inside the cell—something that ordinary antibodies can’t do. To make these probes, the team used a technique known as “mRNA display,” which was developed by Roberts and Nobel laureate Jack Szostak.

“Using mRNA display, we can search through more than a trillion different potential proteins simultaneously to find the one protein that binds the target the best,” said Roberts, co-corresponding author of the article and prof. of chemistry and chemical engineering with joint appointments at USC Dornsife and the USC Viterbi School of Engineering.

Arnold and Roberts’ probes (called “FingRs”) are attached to green fluorescent protein (GFP), a protein isolated from jellyfish that fluoresces bright green when exposed to blue light. Because FingRs are proteins, the genes encoding them can be put into brain cells in living animals, causing the cells themselves to manufacture the probes.

The design of FingRs also includes a regulation system that cuts off the amount of FingR-GFP that is generated after 100% of the target protein is labeled, effectively eliminating background fluorescence—generating a sharper, clearer picture.

These probes can be put in the brains of living mice and then imaged through cranial windows using two-photon microscopy.

Source: Univ. Southern California

Related Articles Read More >

DNA microscope offers new 3D view of organisms from the inside out
A tale of two industries: How manufacturing and medical imaging experts can learn from each other
Dark energy camera captures the glittering galaxies of the Antlia Cluster
R&D 100 winner of the day: Automated digital slide scanner, MSP 320
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • Educational Assets
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE