Research & Development World

  • Home Page
  • Topics
    • Aerospace
    • Archeology
    • Automotive
    • Biotech
    • Chemistry
    • COVID-19
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Market Pulse
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
      • Software
    • Semiconductors
  • 2021 R&D 100 Award Winners
    • R&D 100 Awards
    • 2020 Winners
    • Winner Archive
  • Resources
    • Digital Issues
    • Podcasts
    • Subscribe
  • Global Funding Forecast
  • Webinars

3D Printed “Living” Tattoo Could be Next-Gen Wearable Device

By Kenny Walter | December 5, 2017

MIT engineers have devised a 3-D printing technique that uses a new kind of ink made from genetically programmed living cells. Courtesy of the researchers

Using a 3D printer, researchers have created a living tattoo that could be used for the next generation of wearable devices.

Engineers from the Massachusetts Institute of Technology (MIT) have created a new ink from genetically programmed living cells that are engineered to light up in response to a variety of stimuli.

The cells can be printed, layer by layer, to form 3D, interactive structures and devices when mixed with a slurry of hydrogen and nutrients.

“We found this new ink formula works very well and can print at a high resolution of about 30 micrometers per feature,” Xuanhe Zhao, the Noyce Career Development Professor in MIT’s Department of Mechanical Engineering, said in a statement. “That means each line we print contains only a few cells. We can also print relatively large-scale structures, measuring several centimeters.”

The researchers were able to print a thin, transparent patch patterned with live bacteria cells in the shape of a tree, where each branch is lined with cells sensitive to a different chemical or molecular compound.

The corresponding regions of the tree light up in response, when the patch is adhered to skin that has been exposed to the same compounds.

The new technique could be used to fabricate active materials for wearable sensors and interactive displays, where materials can be patterned with live cells engineered to sense environmental chemicals and pollutants as well as changes in pH and temperature.

The researchers also developed a model to predict the interactions between cells within a given 3D printed structure that can be used as a guide in designing responsive living materials.

For several years, researchers have unsuccessfully attempted to use live mammalian cells to serve as responsive materials for 3D-printed inks. The cells are too weak and easily rupture.

However, the team identified a hardier cell type in bacteria that has tough cell walls that are able to survive relatively harsh conditions. The bacteria is also compatible with most hydrogels—gel-like materials that are made from a mix of mostly water and a polymer.

For the study, the researchers used a hydrogel with pluronic acid that exhibited an ideal consistency for 3D printing.

“This hydrogel has ideal flow characteristics for printing through a nozzle,” Zhao said. “It’s like squeezing out toothpaste. You need [the ink] to flow out of a nozzle like toothpaste, and it can maintain its shape after it’s printed.”    

 

Related Articles Read More >

3D-printed smart wall a cool idea
LLNL optimizes flow-through electrodes for electrochemical reactors with 3D printing
Taking cues from nature, breakthrough ‘cellular fluidics’ technology could have sweeping impacts
Printable Purdue biosensor simultaneously records, makes images of tissues and organs
2021 R&D Global Funding Forecast

Need R&D World news in a minute?

We Deliver!
R&D World Enewsletters get you caught up on all the mission critical news you need in research and development. Sign up today.
Enews Signup

R&D World Digital Issues

February 2020 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R& magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • 2022 Global Funding Forecast

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • Home Page
  • Topics
    • Aerospace
    • Archeology
    • Automotive
    • Biotech
    • Chemistry
    • COVID-19
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Market Pulse
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
      • Software
    • Semiconductors
  • 2021 R&D 100 Award Winners
    • R&D 100 Awards
    • 2020 Winners
    • Winner Archive
  • Resources
    • Digital Issues
    • Podcasts
    • Subscribe
  • Global Funding Forecast
  • Webinars