Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • Educational Assets
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

3D Printing is Transforming Care for Congenital Heart Disease

By American College of Cardiology | April 30, 2018

3D printing is an emerging technology that is impacting the way cardiologists treat patients with congenital heart disease (CHD), according to a review paper published today in JACC: Basic to Translational Science.

The prevalence of CHD is approximately nine per 1,000 live births, and overall survival rates have steadily increased for even the most complex diseases; however, these patients face many other health obstacles and challenges including the risk of long-term morbidity, re-intervention, length of hospitalization, neurodevelopmental outcomes and more.

“Obtaining the best outcomes requires impact at multiple levels, including patients and caregivers, individual clinicians, the medical team and healthcare system,” Anwar said. “3D printing is a disruptive technology that is impacting each of these key areas in CHD.” The adoption of 3D printing in health care is relatively recent, with the most growth seen in cardiology in the past decade.

“3D printing is rapidly evolving in medicine, with technical improvements in printers and software fueling new and exciting applications in patient care, innovation and research,” said Shafkat Anwar, MD, pediatric cardiologist at Washington University in St. Louis, School of Medicine and the lead author of the paper.

In cardiovascular 3D printing, the 3D model is a replica of a patient’s anatomy. These models may be used for precise pre-surgical planning and simulation. This may potentially reduce time spent in the operating room and result in fewer complications.

According to the review, 3D printing also has the potential to bring transformative change in the education and training of physicians. This technology may lead to an educational shift from an apprenticeship model to a simulator-based learning method that augments traditional mentored training. 3D models in CHD can reduce the learning curve for cardiac trainees in three key areas–understanding complex 3D anatomy, high-fidelity simulation experiences and exposure to rare cases. Experienced practitioners can also benefit by using models for lifelong learning, maintenance of certification or for practice before challenging cases.

Additionally, 3D models serve a communicative purpose as well. Models can be used between specialists to discuss pathology, surgical plans, anticipated outcomes and peri-operative care, which may reduce medical errors. Models can also be used to help the medical team provide patients and caregivers with a better understanding of the disease process, risks, benefits and alternatives.

“The ultimate viability of medical 3D printing will in large part depend on the impact it has on improving patient care,” Anwar said.

Anwar and colleagues said they predict that the next advances in 3D printing will likely be driven by improvements in printer technology and print materials. Tissue mimicking materials, which would enable the creation of more life-like models that replicate a patient’s unique anatomy and physiology, are currently in development. As models become more realistic, they may be used to study pathophysiology–or the functional changes observed from a particular disease or syndrome–as well as predict long-term outcomes and choose optimal treatment plans or surgical repairs. Finally, while the technology is in its infancy, there is the potential to print living tissue.

While this technology has the potential to be game-changing, broad adoption is currently hampered by relatively high costs of modeling and printing.

Related Articles Read More >

Caltech team 3D-prints drug depots deep inside living tissue
What could make MXene a key to ultra-precise, additive-free 3D microprinting?
Industry 4.0 Modern Factory: Facility Operator Controls Workshop Production Line, Uses Computer with Screens Showing Complex UI of Machine Operation Processes, Controllers, Machinery Blueprints
Building the thinking factory: An additive exec on AI, automation, and the skills crisis
Red Bull and Mercedes F1 cars 3D illustration, 30 Aug, 2022, Texas, EUA
6 technologies pushing Formula 1’s engineering frontier
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • Educational Assets
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE