Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

A New Non-Destructive Technique to Detect Single Quantum Level Phonons

By Science China Press | March 27, 2018

This is the scheme of the quantum non-demolition phonon counter. Credit: ©Science China Press

The precision measurement of photons, the smallest energy quanta of mechanics, has always been the main constraint to the development of quantum applications, such as quantum computation and quantum communication. A recent study has shown that a well-designed optomechanical device (see figure) can non-destructively detect phonon signals of a wide range of frequencies and in single-quantum level.

The paper titled: “Quantum non-demolition phonon counter with a hybrid optomechnical system”, written by professor Zhang Keye from the East China Normal University and researcher Dong Ying from the University of Waterloo in Canada, is published recently in SCIENCE CHINA Physics, Mechanics & Astronomy 61(5), 050311(2018).

In the paper the researchers put forward a new design of measurement device of phonons (see fig1). Different from the optical photons, which have a lot of methods of quantum measurement developed in the extensive researches of quantum optics, the phonons are difficult to detect precisely because their frequency domain is full of various low-frequency noises and the thermal noise of materials.

In addition, in the quantum region, the quantum measurement back-action is no longer negligible, leading to a destructive effect on the quantum states of phonons to be detected. So far, the methods of high-precision quantum metrology of phonons are mostly based on the photon-phonon scattering effect, which has a big limit on the frequency domain of the phonons.

Their new method, utilize the polaritons, the quasiparticles of the optomechanical system as a bridge, effectively performing the non-destructive quantum measurement method of photons on the phonons. In addition, they also break through the frequency constraint by parametric phonon coupling, greatly broadening the effective phonon frequency range of this method.

This result is of great significance for quantum computing, quantum communication and other quantum technologies based on solid quantum devices.

 

Related Articles Read More >

LLNL deposits quantum dots on corrugated IR chips in a single step
Aardvark AI forecasts rival supercomputer simulations while using over 99.9% less compute
Physicists create supersolid state of light, blending properties of liquids and solids
Samson Shatashvili, winner of the 2025 Dannie Heineman Prize for Mathematical Physics
Samson Shatashvili awarded 2025 Heineman Prize for Mathematical Physics for quantum field theory advances
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE