Research & Development World

  • Home Page
  • Topics
    • Aerospace
    • Archeology
    • Automotive
    • Biotech
    • Chemistry
    • COVID-19
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Market Pulse
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
      • Software
    • Semiconductors
  • 2021 R&D 100 Award Winners
    • R&D 100 Awards
    • 2020 Winners
    • Winner Archive
  • Resources
    • Digital Issues
    • Podcasts
    • Subscribe
  • Global Funding Forecast
  • Webinars

A Step Toward Sensitive and Fast Gluten Detection

By American Chemical Society | February 7, 2018

For people with celiac disease and gluten-sensitivities, the number of food options in the stores is growing. But current tests for gluten are not finding all of the substance in foods, resulting in some products being labeled “gluten free” when they really aren’t. Now researchers reporting in ACS Sensors say they have developed a fast gluten detector that has the potential to detect and quantify different sources of gluten than those on the market today.

Gluten is an array of proteins found in plants such as wheat, barley and oats. The enzyme-linked immunosorbent assay (ELISA) is the gold standard for sensing the levels of these proteins in foods. But this test is inconsistent, varies by manufacturer and can provide false negatives, which can result in health problems for those who are sensitive. Also, a different ELISA is needed for optimal detection of each type of gluten — barley, wheat or oat — as some people can be sensitive to proteins from one source but not another. Because of these limitations, scientists have been seeking alternative methods, such as DNA-based sensors and mass spectrometry, to do this testing. DNA-based sensors do not accurately reflect gluten content, and mass spectrometry, although accurate and sensitive, is costly and requires technical expertise. So, Kevin D. Dorfman, Scott P. White and C. Daniel Frisbie wanted to design a more comprehensive detector.

The researchers developed an immunological assay based on floating gate transistors. Their test is in a device that includes tiny microchannels for a sample to move through. If a sample contains gluten, the substance can bind to one of three capture agents, which can be antibodies or a DNA-based aptamer, that specifically latch onto gluten proteins from certain sources. This binding causes a shift in the voltage read-out of the transistor and can provide a chemical fingerprint that tells researchers whether the gluten was from barley or wheat, for example. Compared to ELISA, the newly developed sensor produced results 45 minutes faster due to fewer processing steps and automated sampling. As with ELISA, the detectors could sense less than 20 parts per million of gluten, which is the allotted maximum limit by the U.S. Food and Drug Administration for a “gluten-free” designation.

Related Articles Read More >

R&D 100 winner of the day: Guardiant
R&D 100 winner of the day: PPG HI-TEMP 1027 HD
R&D 100 of the day: Autonomous Self-Healing Sealant
Why there’s a neon shortage — and why it matters
2021 R&D Global Funding Forecast

Need R&D World news in a minute?

We Deliver!
R&D World Enewsletters get you caught up on all the mission critical news you need in research and development. Sign up today.
Enews Signup

R&D World Digital Issues

February 2020 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R& magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • 2022 Global Funding Forecast

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • Home Page
  • Topics
    • Aerospace
    • Archeology
    • Automotive
    • Biotech
    • Chemistry
    • COVID-19
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Market Pulse
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
      • Software
    • Semiconductors
  • 2021 R&D 100 Award Winners
    • R&D 100 Awards
    • 2020 Winners
    • Winner Archive
  • Resources
    • Digital Issues
    • Podcasts
    • Subscribe
  • Global Funding Forecast
  • Webinars