Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Artificial Intelligence for Obtaining Chemical Fingerprints

By University of Vienna | September 26, 2017

The scientists have found a way to accelerate chemical simulations using artificial intelligence. Credit: Philipp Marquetand

Drastic advances in research of artificial intelligence have led to a wide range of fascinating developments in this area over the last decade. Autonomously driven cars, but also everyday applications such as search engines and spam filters illustrate the versatility of methods from the field of artificial intelligence.

Infrared spectroscopy is one of the most valuable experimental methods to gain insight into the world of molecules. Infrared spectra are chemical fingerprints that provide information on the composition and properties of substances and materials. In many cases, these spectra are very complex – a detailed analysis makes computer-aided simulations indispensable. While quantum chemical calculations in principle enable extremely precise prediction of infrared spectra, their applicability in practice is made difficult by the high computational effort associated with them. For this reason, reliable infrared spectra can only be calculated for relatively small chemical systems.

An international group of researchers led by Philipp Marquetand from the Faculty of Chemistry at the University of Vienna has now found a way to accelerate these simulations using artificial intelligence. For this purpose, so-called artificial neural networks are used, mathematical models of the human brain. These are able to learn the complex quantum mechanical relationships that are necessary for the modelling of infrared spectra by using only a few examples. In this way, the scientists can carry out simulations within a few minutes, which would otherwise take thousands of years even with modern supercomputers – without sacrificing reliability. “We can now finally simulate chemical problems that could not be overcome with the simulation techniques used up to now,” says Michael Gastegger, the first author of the study.

Based on the results of this study, the researchers are confident that their method of spectra prediction will be widely used in the analysis of experimental infrared spectra in the future.

Related Articles Read More >

OpenAI spends $6.5 billion on Jony Ive-founded startup io
H100 image from NVIDIA
After reportedly pursuing Shanghai R&D site, Nvidia calls U.S. GPU export controls a ‘failure’
NASA taps 100 million satellite images to train an open geospatial foundation model
Why Google DeepMind’s AlphaEvolve incremental math and server wins could signal future R&D payoffs
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE