Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Cell Phone Microscope Brings Low-cost Screening to the Field

By R&D Editors | July 23, 2009

Cell Phone Microscope Brings Low-cost Screening to the Field

Fluorescent images of TB bacteria
Fluorescent images of TB bacteria taken by the CellScope. Courtesy of David Breslauer images

Researchers at the University of California, Berkeley, are proving that a camera phone can capture far more than photos of people or pets at play. They have now developed a cell phone microscope, or CellScope, that not only takes color images of malaria parasites, but of tuberculosis bacteria labeled with fluorescent markers.

The prototype CellScope, described in the July 22 issue of the peer-reviewed, online journal PLoS ONE, moves a major step forward in taking clinical microscopy out of specialized laboratories and into field settings for disease screening and diagnoses.

“The same regions of the world that lack access to adequate health facilities are, paradoxically, well-served by mobile phone networks,” said Dan Fletcher, UC Berkeley associate professor of bioengineering and head of the research team developing the CellScope. “We can take advantage of these mobile networks to bring low-cost, easy-to-use lab equipment out to more remote settings.”

The engineers attached compact microscope lenses to a holder fitted to a cell phone. Using samples of infected blood and sputum, the researchers were able to use the camera phone to capture bright field images of Plasmodium falciparum, the parasite that causes malaria in humans, and sickle-shaped red blood cells. They were also able to take fluorescent images of Mycobacterium tuberculosis, the bacterial culprit that causes TB in humans. Moreover, the researchers showed that the TB bacteria could be automatically counted using image analysis software.

“The images can either be analyzed on site or wirelessly transmitted to clinical centers for remote diagnosis,” said David Breslauer, co-lead author of the study and a graduate student in the UC San Francisco/UC Berkeley Bioengineering Graduate Group. “The system could be used to help provide early warning of outbreaks by shortening the time needed to screen, diagnose and treat infectious diseases.”

 CellScope prototype configured for fluorescent imaging
CellScope prototype configured for fluorescent imaging.

The engineers had previously shown that a portable microscope mounted on a mobile phone could be used for bright field microscopy, which uses simple white light — such as from a bulb or sunlight — to illuminate samples. The latest development adds to the repertoire fluorescent microscopy, in which a special dye emits a specific fluorescent wavelength to tag a target — such as a parasite, bacteria or cell – in the sample.

“Fluorescence microscopy requires more equipment — such as filters and special lighting — than a standard light microscope, which makes them more expensive,” said Fletcher. “In this paper we’ve shown that the whole fluorescence system can be constructed on a cell phone using the existing camera and relatively inexpensive components.”

The researchers used filters to block out background light and to restrict the light source, a simple light-emitting diode (LED), to the 460 nanometer wavelength necessary to excite the green fluorescent dye in the TB-infected blood. Using an off-the-shelf phone with a 3.2 megapixel camera, they were able to achieve a spatial resolution of 1.2 micrometers. In comparison, a human red blood cell is about 7 micrometers in diameter.

“LEDs are dramatically more powerful now than they were just a few years ago, and they are only getting better and cheaper,” said Fletcher. “We had to disabuse ourselves of the notion that we needed to spend many thousands on a mercury arc lamp and high-sensitivity camera to get a meaningful image. We found that a high-powered LED — which retails for just a few dollars – coupled with a typical camera phone could produce a clinical quality image sufficient for our goal of detecting in a field setting some of the most common diseases in the developing world.”

CellScope schematic set up for fluorescent imaging
Schematic of the CellScope set up for fluorescent imaging. For bright field imaging, the two filters and LED are removed.

The researchers pointed out that while fluorescent microscopes include additional parts, less training is needed to interpret fluorescent images. Instead of sorting out pathogens from normal cells in the images from standard light microscopes, health workers simply need to look for something the right size and shape to light up on the screen.

CellScope prototype configured for fluorescent imaging.

“Viewing fluorescent images is a bit like looking at stars at night,” said Breslauer. “The bright green fluorescent light stands out clearly from the dark background. It’s this contrast in fluorescent imaging that allowed us to use standard computer algorithms to analyze the sample containing TB bacteria.”

Breslauer added that these software programs can be easily installed onto a typical cell phone, turning the mobile phone into a self-contained field lab and a “good platform for epidemiological monitoring.”

While the CellScope is particularly valuable in resource-poor countries, Fletcher noted that it may have a place in this country’s health care system, famously plagued with cost overruns.

“A CellScope device with fluorescence could potentially be used by patients undergoing chemotherapy who need to get regular blood counts,” said Fletcher. “The patient could transmit from home the image or analyzed data to a health care professional, reducing the number of clinic visits necessary.”

The CellScope developers have even been approached by experts in agriculture interested in using it to help diagnose diseases in crops. Instead of sending in a leaf sample to a lab for diagnosis, farmers could upload an image of the diseased leaf for analysis.

The researchers are currently developing more robust prototypes of the CellScope in preparation for further field testing.

The study can be found online at http://dx.plos.org/10.1371/journal.pone.0006320

Related Articles Read More >

Satellite data sheds light on wetland health in cloud-covered regions
Alice & Bob outlines roadmap to 100 logical qubits by 2030
Idemitsu expands partnership with Enthought to accelerate battery material innovation
top 25 AI patent winners of 2024
From NVIDIA to SAP: How 25 global AI patent leaders fared in 2024
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE