Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Coming Soon to Exascale Computing: Software for Chemistry of Catalysis

By Ames Laboratory | October 2, 2018

Nanoparticles speed the rate of catalysis and are useful in applications such as alternative fuels, biosensing, thermal energy storage and more. Ames Laboratory will be designing software for the future of exascale computing and better understanding of how nanoparticles function. (Credit: Ames Laboratory)

The U.S. Department of Energy’s Ames Laboratory is launching a four-year, $3.2 million project to develop software that will bring the power of exascale computers to the computational study and design of catalytic materials.

Ames Laboratory scientist Mark Gordon, also the Francis M. Craig Distinguished Professor of Chemistry at Iowa State University, will lead the laboratory’s project. Old Dominion University, Georgia Institute of Technology, Virginia Tech, and EP Analytics are named as partner institutions in the effort.

The scientific inspiration behind the project, said Gordon, is mesoporous nanoparticles, an area of expertise for the laboratory’s Division Chemical and Biological Sciences. Full of tiny hollow cylinders called pores, they create vast surface area in a small amount of space for active sites to speed the rate of chemical reactions, called catalysis. They are a platform that can be modified for a wide variety of applications such as alternative fuels, biosensing, thermal energy storage, and more.

“Understanding these reactions is the key to customizing and expanding their potential applications,” said Gordon.

Currently, computational chemistry experts use the fragment molecular orbital method (FMO) a type of problem-solving approach that breaks complex model systems down into smaller and simpler tasks that take less time to compute. But too much simplification in a complex system leads to errors in predicting reaction mechanisms.

To solve these shortcomings and to scale software capabilities to the billion billion calculations per second that exascale computing will provide, likely early in the next decade, Ames Laboratory and its partners will improve an existing free-ware program called GAMESS, (General Atomic and Molecular Electronic Structure System). The software was developed by Gordon, members of his research group, and the computational chemistry global research community.

“Experimentalists want to understand what is happening in these pores, which are two to four nanometers wide,” said Gordon. “The number of calculations required to predict the molecular dynamics of these reactions expand exponentially with their complexity. Right now, they just aren’t feasible to do. Exascale computing will change all that.”

The project is part of a larger, $21.6 million effort funded by the U.S. Department of Energy to develop advanced software for the design of new chemicals and chemical processes for energy production and a range of other potential applications.

A key aim of the projects is to take fuller advantage of the nation’s most advanced computers, including so-called “petascale” machines currently deployed at DOE national laboratories—such as Summit at Oak Ridge National Laboratory, recently ranked fastest in the world—and the still faster “exascale” machines expected to be deployed beginning early in the next decade. Petascale machines are capable of at least one quadrillion (1015) calculations per second, while exascale machines, the first scheduled for deployment at Argonne National Laboratory in 2021, will be capable of at least one quintillion (1018) calculations.

Ames Laboratory is a U.S. Department of Energy Office of Science national laboratory operated by Iowa State University. Ames Laboratory creates innovative materials, technologies and energy solutions. We use our expertise, unique capabilities and interdisciplinary collaborations to solve global problems.

DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Related Articles Read More >

From solar system simulations to SaaS savings, how Codeium’s AI agent empowers non-coders and scientists alike
Aardvark AI forecasts rival supercomputer simulations while using over 99.9% less compute
Quantum Brilliance, Pawsey integrate room-temp quantum with HPC on NVIDIA GH200
Frontier supercomputer reveals new detail in nuclear structure
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE