Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • 2025 R&D 100 Award Winners
    • 2025 Professional Award Winners
    • 2025 Special Recognition Winners
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
  • Resources
    • Research Reports
    • Digital Issues
    • Educational Assets
    • R&D Index
    • Subscribe
    • Video
    • Webinars
    • Content submission guidelines for R&D World
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Energy Department awards CUNY Energy Institute $4.6 million

By R&D Editors | September 14, 2010

Energy Department awards CUNY Energy Institute $4.6 million

The CUNY Energy Institute, based at The City College of New York (CCNY), was awarded two grants totaling $4.6 million over three years in the latest round of funding from the U.S. Department of Energy’s Advanced Research Projects Agency ? Energy (ARPA-E). They are among the 43 grants totaling $92 million announced July 12 by U.S. Secretary of Energy Steven Chu for cutting-edge research projects to dramatically improve how the United States uses and produces energy.

“ARPA-E conducted an intensely competitive selection process, evaluating over 500 proposals for this round of funding,” said Dr. Sanjoy Banerjee, director of the Energy Institute and distinguished professor of chemical engineering in the Grove School of Engineering at City College.

“We’re ecstatic to have two of our grants funded. The funding is an important vote of confidence for our work to help America achieve energy independence, and these projects are another important collaboration between the Grove School and City College’s Division of Science.”

ARPA-E is a newly created agency for energy technology research and development funded through the American Reinvestment and Recovery Act. It is intended to bring a sense of mission to energy research that will attract many of the United States’ best and brightest minds, especially, those of students and young researchers. Its approach emphasizes high risk, “out-of-the-box,” transformational energy research that industry by itself cannot support but where success would provide dramatic benefits for the nation.

“We are delighted and honored to be working with ARPA-E”, said Dr. Stephen O’Brien, CCNY associate professor of chemistry and member of the Energy Institute. “They are a unique body of experienced professionals and are already working closely with us in order to help shape the goals of the projects.”

The two Energy Institute projects focus on energy storage. The first project, funded at $3.0 million, is lead by Professor Banerjee. In partnership with Rechargeable Battery Corp. and Ultralife Corp., the Energy Institute will develop a low-cost, grid-scale electrical storage system using a flow-assisted, rechargeable zinc-manganese oxide battery.

The second project, funded at $1.6 million and lead by Professor O’Brien, will develop, in partnership with Columbia University and University of California Berkeley, a new form of capacitors (called “metacapacitors”) that will have applications in power conversion efficiency for solid state lighting.

The two projects will be funded over three years. The battery project is funded through ARPA-E’s GRIDS program (grid-scale rampable intermittent dispatchable storage); the metacapacitor project from the ADEPT program (agile delivery of electrical power technology).

The first project aims to develop a battery that can transform the chemistry and low-cost materials found in disposable consumer-grade alkaline batteries ? zinc and manganese oxide ? into a long-lasting, fully rechargeable energy storage system. “Grid-scale storage of surplus power from solar and wind resources is essential to further development of renewable energy sources,” Professor Banerjee said. “Without storage capability, the grid will destabilize.”

He added that improved energy storage would reduce the need for excess generating capacity to handle peak load demand. Power produced during off-peak periods could be stored and injected back into grid to cope with demand surges that occur on hot summer days, for example.

However, two research problems need to be addressed before grid-scale energy storage can be achieved. Zinc electrodes do not change and discharge uniformly, resulting in the build-up of dendrites that can short out the battery. Additionally, manganese oxide is not a reliable source of hydroxyl ions, which produce energy.

The Energy Institute hopes to address these problems by producing a flow-assisted battery and has demonstrated a zinc and nickel oxide battery that proves the basic science behind the concept. “These work well, but are expensive compared to manganese oxide,” Professor Banerjee said. “Manganese oxide could reduce the cost by a factor of two of three per unit of electricity stored.”

The Institute plans to replace the nickel with reversible electrodes that use material innovations achieved by Rechargeable Battery Corp. It aims to produce a 25 kW rechargeable storage system that can last through 5,000 charging and recharging cycles, be produced for under $100 per kWh and show strong potential for scaling to megawatt-hour levels in grid-scale electricity storage.

The second project builds on nanotechnology and nanoelectronics techniques developed by the team. The aim is to produce nanocomposite capacitors using barium titanate nanocrystals that can be printed or deposited as a thin film in combination with other electronics to produce integrated power conversion or energy storage electronics devices. The study will focus on converting AC to DC to power LEDs (light-emitting diodes), which are very sensitive to changes in current levels.

“A great deal of energy loss occurs when we transfer electricity from power source to a useful device, but it’s the price we pay for getting the device to work,’ said Professor O’Brien. “A good example is converting electricity (electrons) to light (photons). New lighting technology, such as solid-state lighting, greatly improves energy efficiency over incandescent lighting, but it requires more sophisticated power source technology.’

“The metacapacitors will have built-in switches that will help in the control and conversion of power to the lighting source, but also this technology could be potentially be used for many devices, such as solar cells,” said Dr. Daniel Steingart, an assistant professor of chemical engineering who is a principal investigator on both projects. “If it scales the way we want, it will enable switching (between energy sources) on the grid to be done cheaper.”

Besides Professors Banerjee, O’Brien and Steingart, Dr. Alex Couzis, Chair and Herbert G. Kayser Professor of Chemical Engineering, is working on the projects. Electrical engineering expertise will come from Professors Ioannis Kymissis and Peter Kinget of Columbia University and Professor Seth Sanders of University of California ? Berkeley.

Eight PhD candidates and several post-docs are supported by the grant, which was funded by the American Recovery and Reinvestment Act of 2009. This support will contribute to development of excellence in graduate education at City College and CUNY and will provide lab experience opportunities for undergraduates, Professor Banerjee noted.

SOURCE

Related Articles Read More >

Satellite data sheds light on wetland health in cloud-covered regions
Alice & Bob outlines roadmap to 100 logical qubits by 2030
Idemitsu expands partnership with Enthought to accelerate battery material innovation
top 25 AI patent winners of 2024
From NVIDIA to SAP: How 25 global AI patent leaders fared in 2024
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2025 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Sign up for R&D World’s newsletter
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • 2025 R&D 100 Award Winners
    • 2025 Professional Award Winners
    • 2025 Special Recognition Winners
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
  • Resources
    • Research Reports
    • Digital Issues
    • Educational Assets
    • R&D Index
    • Subscribe
    • Video
    • Webinars
    • Content submission guidelines for R&D World
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE