Research & Development World

  • Home Page
  • Topics
    • Aerospace
    • Archeology
    • Automotive
    • Biotech
    • Chemistry
    • COVID-19
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Market Pulse
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
      • Software
    • Semiconductors
  • 2021 R&D 100 Award Winners
    • R&D 100 Awards
    • 2020 Winners
    • Winner Archive
  • Resources
    • Digital Issues
    • Podcasts
    • Subscribe
  • Global Funding Forecast
  • Webinars

First plant-based “microswimmers” could propel drugs to the right location

By R&D Editors | December 19, 2013

In the quest to shrink motors so they can maneuver in tiny spaces like inside and between human cells, scientists have taken inspiration from millions of years of plant evolution and incorporated, for the first time, corkscrew structures from plants into a new kind of helical “microswimmer.” The low-cost development, which appears in ACS’ journal Nano Letters, could be used on a large scale in targeted drug delivery and other applications.

Joseph Wang and colleagues point out that nanomotors have tremendous potential in diverse applications from delivering drugs to precise locations in the body to making biosensors. To realize this potential, scientists have recently taken inspiration from microorganisms that have tiny, hair-like structures that they whip around to propel themselves. But copying these nature-engineered nanomotors requires advanced instruments and costly processing techniques that make them a challenge to produce on a large scale. To address these issues of practicality, Wang’s group also drew inspiration from nature, but turned to plants instead.

They isolated spiral microstructures packed by the million in small pieces of a plant’s stem. The scientists coated these tiny coils that are about the width of a fine cotton fiber with thin layers of titanium and magnetic nickel. The plant material makes these microswimmers biodegradable and less likely to be rejected by the human body. The magnetic layer allows scientists to control the motors’ movement. When the scientists placed the coated spirals in water or human blood serum and applied a magnetic field, the nanomotors efficiently spun their way through the liquids. The scientists conclude that the microswimmers show great promise for future biomedical uses.

The authors acknowledge funding from the Defense Threat Reduction Agency-Joint Science and Technology Office for Chemical and Biological Defense.

Bioinspired Helical Microswimmers Based on Vascular Plants

Source: American Chemical Society

 

Related Articles Read More >

Submit your design for the 2022 Packaging Innovation Awards
What are nanoparticles?
New Ultrathin Capacitor Could Enable Energy-Efficient Microchips
Advanced fluoropolymer materials excel in harsh oil recovery environments
2021 R&D Global Funding Forecast

Need R&D World news in a minute?

We Deliver!
R&D World Enewsletters get you caught up on all the mission critical news you need in research and development. Sign up today.
Enews Signup

R&D World Digital Issues

February 2020 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R& magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • 2022 Global Funding Forecast

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • Home Page
  • Topics
    • Aerospace
    • Archeology
    • Automotive
    • Biotech
    • Chemistry
    • COVID-19
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Market Pulse
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
      • Software
    • Semiconductors
  • 2021 R&D 100 Award Winners
    • R&D 100 Awards
    • 2020 Winners
    • Winner Archive
  • Resources
    • Digital Issues
    • Podcasts
    • Subscribe
  • Global Funding Forecast
  • Webinars