Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • 2025 R&D 100 Award Winners
    • 2025 Professional Award Winners
    • 2025 Special Recognition Winners
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
  • Resources
    • Research Reports
    • Digital Issues
    • Educational Assets
    • R&D Index
    • Subscribe
    • Video
    • Webinars
    • Content submission guidelines for R&D World
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Flow Units: Dynamic Defects in Metallic Glasses

By Science China Press | November 7, 2018

These are schematic flow units in metallic glasses. Credit: Science China Press

In a crystal, structural defects such as dislocations or twins are well defined and largely determine the mechanical and other properties. These defects can be easily identified as the broken long-range atomic order. However, the lack of a periodic microstructure makes the searching of similar structural defects a difficult task in amorphous materials. Recent studies found that amorphous materials are intrinsically spatially and temporally heterogeneous, which implies the possibility to identify the dynamic defect in a glass. Metallic glass (MG) with many unique properties is considered as a good model material for its relative simple structure. In the last few years, flow units as dynamic defects were observed and intensively studied in MG systems. A theoretical perspective of flow units was also developed, which not only successfully explains many important experimental phenomena, but also offers the guideline to optimize properties of glasses.

In a new review article published in the Beijing-based National Science Review, scientists at the Institute of Physics, Chinese Academy of Sciences, Beijing, China present the latest advances in the study of flow units which behaves as dynamic defects in metallic glassy materials. Co-authors Zheng Wang and Wei-Hua Wang summarized the characteristics, activation and evolution processes of flow units as well as their correlation with mechanical properties including plasticity, strength, fracture, and dynamic relaxation.

These scientists likewise outline applications of this flow unit perspective and some challenges.

“We show that flow units that are similar to the structural defects such as dislocations, are crucial in the optimization and design of metallic glassy materials via the thermal, mechanical and high pressure tailoring of these units.” they state.

“It took more than half a century to finally identify the dislocations in a crystals, which have a much simpler configuration compared to glass. “History doesn’t repeat itself, but it often rhymes” said by Mark Twain. The discovery of dynamic defects in glasses has followed a similar track to the identification of dislocations in crystals, and now we at the precipice of final answers to a longstanding questions.”

Related Articles Read More >

Researchers could be one step closer to understanding the origin of matter thanks to a new study
The Milky Way is glowing: these scientists think dark matter may be the cause
Three scientists awarded Nobel Prize in physics for showing quantum properties could exist in large-scale systems
ORNL named on 20 R&D 100 Awards, including carbon-capture and AM tools
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Sign up for R&D World’s newsletter
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • 2025 R&D 100 Award Winners
    • 2025 Professional Award Winners
    • 2025 Special Recognition Winners
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
  • Resources
    • Research Reports
    • Digital Issues
    • Educational Assets
    • R&D Index
    • Subscribe
    • Video
    • Webinars
    • Content submission guidelines for R&D World
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE