Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • Educational Assets
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Interactive Size Control of Catalyst Nanoparticles

By Institute Of Physical Chemistry Of The Polish Academy Of Sciences | December 6, 2018

In microfluidic devices, the size of the catalyst nanoparticles can be modified interactively. Credit: IPC PAS, Grzegorz Krzyzewski

5, 10, or maybe 15? How many nanometers should nanoparticles of a catalyst be to optimize the course of the reaction? Researchers usually look for the answer by laborious, repetitive tests. At the Institute of Physical Chemistry of the Polish Academy of Sciences in Warsaw, a qualitatively new technique was developed to improve the process of such optimization in microfluidic systems. The size of the catalyst nanoparticles can now be changed interactively, during a continuous flow through the catalyst bed.

The performance of metal-carrier catalysts often depends on the size of metal nanoparticles. Usually, their size is determined over many consecutive, laborious tests. The method is not flexible enough: once reactions have started, nothing can be done with the catalyst. At the Institute of Physical Chemistry of the Polish Academy of Sciences (IPC PAS) in Warsaw, in the group of Dr. Jacinto Sa, a new technique was developed that allows for optimization of chemical reactions during the continuous microfluidic flow through the catalyst bed, and thus literally “on the fly”. This was achieved through interactive control of the size of the catalyst nanoparticles. Due to its simplicity and efficiency, this innovative technique should soon be used in the research on the new catalysts for the pharmaceutical and perfumery industries, among others.

“Flow catalysis is becoming more and more popular because it leads to the intensification of processes important for the industry. Our technique is the next step in this direction: we reduce the time needed to determine the sizes of catalyst nanoparticles. That means we can faster optimize the chemical reactions and even interactively change their course. An important argument here is also the fact that the entire process is carried out within a small device, so we reduce costs of additional equipment,” says Dr. Sa.

Scientists from the IPC PAS demonstrated their achievement with a system based on a commercially available flow microreactor, equipped with a replaceable cartridge with an appropriately designed metal catalyst. By electrolysis of water, the selected microreactor could supply hydrogen, necessary for the hydrogenation of chemical compounds in the flowing liquid, to the catalyst bed. The reaction medium was a solution of citral, an organic aldehyde compound with a lemon scent.

The nickel catalyst NiTSNH2 used in the experiment, in the form of a fine black powder, was previously developed at the IPC PAS. It consists of grains of polymeric resin covered with nickel nanoparticles. The grain size is approx. 130 micrometers and the nanoparticles of the catalyst are initially 3-4 nanometers.

“At the core of our achievement is to show how to modify the morphology of catalyst nanoparticles in a sequence with a chemical reaction. After each change in the size of the nanoparticles, we get immediate information about the effect of this modification on the catalyst activity. Therefore, it is easy to assess which nanoparticles are optimal for a given chemical reaction,” explains PhD student Damian Gizinski (IPC PAS).

In the system described in the journal ChemCatChem, the researchers increased the size of the catalyst nanoparticles to 5, 9 and 12 nm in a controlled manner. The growth effect was achieved by flushing the catalyst bed with an alcohol solution containing nickel ions. Within the bed, they were deposited on the existing nanoparticles and reduced under the influence of hydrogen. The final size of the nanoparticles depends here on the exposure time to the solution with Ni2+ ions.

In the reaction with citral, the best catalytic performances were attained with 9 nm nanoparticles. The researchers also observed that up to 9 nm the growth of nanoparticles favored the redirection of the reaction towards citronellal production, while above this value the pathway to the citronellol was preferred (differences resulted from the fact that smaller nanoparticles favored selective hydrogenation of unsaturated bond C=C, while larger ones activated both the bond C=C and the carbonyl bond C=O). These two compounds have slightly different properties: citronellal is used to repel insects, especially mosquitoes, and as an antifungal agent; citronellol not only repels insects but also attracts mites, it is also used to produce perfumes.

For potential applications of the new technique, it is important that after the modification, the catalysts were stable at least five hours in a continuous flow of the reaction solution, both in respect to its activity and selectivity.

Related Articles Read More >

New nanopore sensor paves the way for fast, accurate, low-cost DNA sequencing
Floating solar mats clean polluted water — and generate power
Nanodots enable fine-tuned light emission for sharper displays and faster quantum devices
New photon-avalanching nanoparticles could enable next-generation optical computers
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • Educational Assets
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE