Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Kevlar Modified with Nanofibers to Provide Comfortable, Flexible Heat

By American Chemical Society | November 1, 2018

Sometimes nothing feels better on stiff, aching joints than a little heat. But many heating pads and wraps are rigid and provide uneven warmth, especially when the person is moving around.

Researchers have now made a wearable heater by modifying woven Kevlar fabric with nanowires that conduct and retain heat.

They report their results in ACS’ journal Nano Letters.

Even at rest, the human body produces a lot of heat, but most of this warmth dissipates to the air and is wasted. Cold-weather clothing is often made from materials that keep heat close to the body, offering thermal insulation.

For even more warmth, scientists have tried coating textiles with metallic nanowires that can be heated with a small battery. However, researchers are still searching for a material that provides good thermal conductivity and insulation while being safe, inexpensive, durable, and flexible.

Hyung Wook Park and colleagues wondered if they could make a wearable heating device by incorporating metallic nanowires into Kevlar, the famous bulletproof fiber used in many types of body armor.

To make their wearable heater, the team grew copper-nickel nanowires between two Kevlar sheets. They filled in the spaces between the nanowires with a resin containing reduced graphene oxide to encourage uniform heating.

Applying a low voltage (1.5 volts) to the composite material caused a rapid and uniform increase in surface temperature to 158 F — a typical “high” setting on a heating pad.

In another experiment, the team showed that the material acted as a thermal insulator by reflecting infrared radiation emitted from a hot plate set at human body temperature.

The fabric was strong, flexible, breathable and washable, while still absorbing impacts similar to regular Kevlar.

In addition to wearable heat therapy, the new material could be used to make heated body armor for police and military personnel in cold climates, the researchers say.

Source: American Chemical Society

Related Articles Read More >

IoT
Sensor data, reimagined: When 90% less data can fuel 100x gains in efficiency in AI projects
Sandia Labs joins with other institutions to tackle AI energy challenges with microelectronics research
LG
Stretchable batteries and body-conformable electronics poised to advance in 2025
Critical Spaces Control Platform
Phoenix Critical Spaces Control Platform uses automation to direct airflow
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE