Research & Development World

  • Home Page
  • Topics
    • Aerospace
    • Archeology
    • Automotive
    • Biotech
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Market Pulse
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Battery Technology
    • Imaging
    • Nanotechnology
    • Semiconductors
  • Controlled Environments
    • Cleanrooms
    • Graphene
    • Lasers
    • Regulations/Standards
    • Sensors
  • Scientific Computing
    • Big Data
    • HPC/Supercomputing
    • Informatics
    • Security
    • Software
  • R&D 100 Awards
    • ENTER NOW
    • 2020 Winners
    • Winner Archive
    • R&D 100 Conference
  • Resources
    • Digital Issues
    • Podcasts
    • Subscribe
  • 2021 Funding Forecast
  • COVID-19

Laser Experiments Lend Insight Into Metal Core at Heart of the Earth

By University of Edinburgh | July 6, 2018

Scientists have discovered fresh insights into the metallic core at the centre of our planet.

The findings could aid understanding of how the Earth was formed from elements in space, some 10 billion years ago.

They could also shed light on the fundamental physical nature of nitrogen, one of the most abundant elements in the atmosphere.

An international team of researchers carried out sophisticated experiments to replicate conditions at the Earth’s core.

Using high energy laser beams and optical sensors, they were able to observe how samples of nitrogen behaved at more than 1 million times normal atmospheric pressure and temperatures above 3,000C.

Their observations confirmed that, under such conditions, nitrogen exists as a liquid metal.

The findings give scientists valuable insight into how nitrogen behaves at extreme conditions, which could aid understanding of how the planets were formed.

It may help to explain why Earth is the only planet known to have an abundance of nitrogen in its atmosphere – where it exists as a gas. Nitrogen in the air could emerge from deeper within the planet, where, for example, it could mix with other liquid metal.

The findings could also shed light on how the planet’s atmosphere evolved and how it may develop in future.

Their study, carried out by the University of Edinburgh with researchers in China and the US, was published in Nature Communications. It was supported by the Engineering and Physical Science Research Council and the British Council.

Dr Stewart McWilliams, of the University of Edinburgh’s School of Physics and Astronomy, who took part in the study, said: “Earth’s atmosphere is the only one of all the planets where nitrogen is the main ingredient – greater even than oxygen. Our study shows this nitrogen could have emerged from deep inside the planet.”

Related Articles Read More >

LaserNetUS High-Power Laser Consortium, including Berkeley Lab, receives $18M from the U.S. DOE
Quirky response to magnetism presents quantum physics mystery
Three awards will support accelerator R&D for medical treatment, miniaturization and machine learning
SwRI, UTSA researchers work to better understand hypersonic flight environments

Need R&D World news in a minute?

We Deliver!
R&D World Enewsletters get you caught up on all the mission critical news you need in research and development. Sign up today.
Enews Signup
Tweets by @RandDWorld

R&D World Digital Issues

February 2020 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R& magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • 2021 Global Funding Forecast

Copyright © 2021 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • Home Page
  • Topics
    • Aerospace
    • Archeology
    • Automotive
    • Biotech
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Market Pulse
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Battery Technology
    • Imaging
    • Nanotechnology
    • Semiconductors
  • Controlled Environments
    • Cleanrooms
    • Graphene
    • Lasers
    • Regulations/Standards
    • Sensors
  • Scientific Computing
    • Big Data
    • HPC/Supercomputing
    • Informatics
    • Security
    • Software
  • R&D 100 Awards
    • ENTER NOW
    • 2020 Winners
    • Winner Archive
    • R&D 100 Conference
  • Resources
    • Digital Issues
    • Podcasts
    • Subscribe
  • 2021 Funding Forecast
  • COVID-19