Research & Development World

  • Home Page
  • Topics
    • Aerospace
    • Archeology
    • Automotive
    • Biotech
    • Chemistry
    • COVID-19
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Market Pulse
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
      • Software
    • Semiconductors
  • 2021 R&D 100 Award Winners
    • R&D 100 Awards
    • 2020 Winners
    • Winner Archive
  • Resources
    • Digital Issues
    • Podcasts
    • Subscribe
  • Global Funding Forecast
  • Webinars

Molecular Semiconductors Made Using Faster, Scalable Method

By KTH Royal Institute of Technology | October 16, 2018

A nano-scale view of a molecular junction created with a new, scalable method reported in Nature Communications by researchers at KTH.

Visions for what we can do with future electronics depend on finding ways to go beyond the capabilities of silicon conductors.

The experimental field of molecular electronics is thought to represent a way forward, and recent work at KTH Royal Institute of Technology may enable scalable production of the nanoscale electrodes that are needed in order to explore molecules and exploit their behavior as potentially valuable electronic materials.

A team from the Department of Micro and Nanosystems at KTH recently tested a technique to form millions of viable nanoscale molecular junctions — extremely small pairs of electrodes with a nanometer-sized gap between them, where molecules can be trapped and probed.

The findings were published in Nature Communications.

The KTH researchers reported that with a 100 mm diameter wafer of thin materials, they can produce as many as 20 million such electrodes in five hours’ time, using gold film on top of a brittle material that forms cracks.

In addition, working with the van der Zant Lab at TU Delft, the team trapped and studied a widely used reference molecule in the nanometer-wide space between the electrodes to ensure that the fabrication method didn’t hinder the formation of molecular junctions.

Shyamprasad Natarajan Raja, one of the co-authors, says this “crack-defined break junction” method offers a breakthrough to the impasse of scalable production of structures that could one day enable electronic devices made of single molecules.

The key is to produce gaps that enable a phenomenon called tunneling, in which electrons overcome the break in a circuit. A break junction has a gap the size of a few atoms, which breaks the flow of electrons through it.

However, because the gap is so small, electrons with sufficient energy can still jump across this expanse.

Tunneling electrons sustain a small but measurable current that is extremely sensitive to the size of the gap — and to the presence of nano-objects inside it.

“Break junctions are the best means available to make single molecules part of a larger electronic circuit that can probe molecules,” Raja says.

They could also one day enable ultra-sensitive high-speed detectors using quantum tunneling, he says.

“However, tunneling break junctions are produced one gap at a time, which has been a major roadblock in developing any application involving tunneling junctions outside a research laboratory,” Raja says.

The method begins with using photo lithography to pattern a stack of gold on titanium nitride (TiN). This stack is set on a silicon wafer, and the notched structures that are formed then concentrate stress.

So, when the silicon directly underneath the stack is removed (a process called release etching), tiny cracks form at the pre-determined locations in the TiN to release the stress. This in turn deforms the gold, stretching it into atomically thin wires running across these cracks, which upon breaking form gaps as small as a molecule.

Raja says that the method can be used for other conductive materials, besides gold, which offer interesting electrical, chemical and plasmonic properties for applications in molecular electronics and spintronics, nanoplasmonics, and biosensing.

Source: KTH Royal Institute of Technology

Related Articles Read More >

Q-CTRL introduces quantum sensing division to meet market demands
R&D 100 winner of the day: OH0TA OVMed Medical Image Sensor
R&D 100 winner of the day: BLK247 from Leica Geosystems, part of Hexagon
Sandia Labs shows advanced wayfinding tech could finally become compact, fieldable
2021 R&D Global Funding Forecast

Need R&D World news in a minute?

We Deliver!
R&D World Enewsletters get you caught up on all the mission critical news you need in research and development. Sign up today.
Enews Signup

R&D World Digital Issues

February 2020 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R& magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • 2022 Global Funding Forecast

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • Home Page
  • Topics
    • Aerospace
    • Archeology
    • Automotive
    • Biotech
    • Chemistry
    • COVID-19
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Market Pulse
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
      • Software
    • Semiconductors
  • 2021 R&D 100 Award Winners
    • R&D 100 Awards
    • 2020 Winners
    • Winner Archive
  • Resources
    • Digital Issues
    • Podcasts
    • Subscribe
  • Global Funding Forecast
  • Webinars