Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Nanotech Dentures Fight Bacteria

By Karlsruhe Institute of Technology | July 16, 2018

Vasodilating stents, “labs-on-chips” for analysis on smallest areas, 3D cell culturing systems for tissue reconstruction: microtechnology is gaining importance in the medical sector. It also opens up new potentials in the area of implantology. Scientists of Karlsruhe Institute of Technology (KIT), together with experts for dental implants, have now developed a nanostructured surface to accelerate wound healing after implantation and to better protect it against the attack of bacteria.

“Microtechnology can sustainably improve dental implants,” say Professor Andreas Guber and Dr. Ralf Ahrens, who head the Biomedical Microtechnology (BioMEMS) research group at KIT’s Institute of Microstructure Technology. Modern dental implants consist of a titanium screw that is fixed in the jawbone to replace the dental root, a connected abutment made of titanium for tooth replacement, and the visible dental crown. Titanium is the material of choice. It is biocompatible and ensures good growth of the screw into the bone, which is also called osseointegration. So far, optimization of dental implants has focused mainly on the titanium surface of the screw in order to further improve this process. However, dental implants may become inflamed even after successful osseointegration.

The main gateway for bacteria is the abutment. If the gum is not in perfect contact with the abutment, pockets may form, via which bacteria can reach the jawbone and cause inflammation there. In this case, the complete implant has to be removed again. The BioMEMS team now wants to solve this problem. Research is based on an optimized abutment developed by the specialist “Abutments4Life.” Grooves smaller than the width of a hair circulate the abutment and guide the cells responsible for wound healing into the right direction. In this way, wound healing is accelerated.

“This system is our point of departure,” Patrick Doll, scientist of IMT, says. Further development focuses on two aspects: more precise structuring of the grooves for better guiding of the cells and search for an optimum nanosurface to which the bacteria cannot attach.

Scanning electron microscopy: E. coli bacteria try to dock with a nanostructured model surface. Image: Patrick Doll, KIT

With an electron-beam lithography system, Doll produced columnar structures of 100 nanometers in diameter and 500 nanometers in height. These structures were then used to carry out adhesion experiments with typical test bacteria, such as S. aureus, E. coli, or P. aeruginosa. Moreover, the structures were varied constantly. The result: depending on the distance and arrangement of the columns, adhesion of bacteria is reduced and formation of a biofilm is delayed. Hence, recovering cells have more time to close the wound, an effect that would otherwise be achieved by antibiotics only.

“We think that our structural approach is very promising,” Doll emphasizes. Production of the silicon-based nanostructures is perfect and reproducible. In the course of the project, the scientists also developed methods for use of titanium. After the first phase in the lab, preclinical tests will follow soon. Apart from dental medicine, experts see application potentials for bone plates, hearing implants, or artificial joints, among others.

The project was funded by the Federal Ministry for Economic Affairs and Energy (BMWi). Partner of the IMT was the implant producer “Abutments4Life.” Biological investigations were carried out by the Department of Operative Dentistry and Periodontology at the Medical Center — University of Freiburg.

Source: Karlsruhe Institute of Technology

Related Articles Read More >

Floating solar mats clean polluted water — and generate power
Nanodots enable fine-tuned light emission for sharper displays and faster quantum devices
New photon-avalanching nanoparticles could enable next-generation optical computers
New “nose-computer interface” aims to upgrade Rover’s nose for better drug detection methods
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE