Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

New Molecule Predicted That Could Make Safer Batteries

By Department of Energy, Office of Science | March 3, 2017

A recently predicted doubly ionized molecule with extraordinary stability could help make very safe and efficient batteries. The image shows the predicted structure of this boron (B) (pink), carbon (C) (black), nitrogen (N) (blue) molecule: B12(CN)122-. In the optimized geometry, CN moieties are bound radially to the icosahedron made of boron atoms with the carbon atoms attached to the boron atoms.Credit: Image courtesy of the authors and Angewandte Chemie International Edition 55, 3704 (2016).

The Science

Long-lasting, lightweight batteries could improve everything from electric cars to cell phones. The challenge in designing such batteries is getting the molecules to handle more electrons (electricity). Most small molecules cannot accommodate multiple extra electrons. Why? The repulsion between the electrons causes the molecule to disintegrate. The icosahedral-shaped molecule composed of 20 boron and 20 hydrogen atoms is one of the exceptions. Scientists made it more stable. They substituted a carbon-nitrogen (CN) atomic pair for hydrogen. The result is a six-fold increase in the molecular stability. If confirmed experimentally, this colossal improvement would make this the world’s most stable doubly ionized molecule and lead to better batteries.

The Impact

This study offers a powerful computational tool for energy storage that will accelerate discovery of novel molecules critically important for new batteries. For example, the researchers used this new complex to design a halogen-free electrolyte. Halogens are toxic. The new electrolyte in lithium- and magnesium-ion batteries could lead to safer, longer-lasting, lighter-weight, more efficient devices.

Summary

Powered by the state-of-the art computational tools and inspired by nature, researchers investigated the stability of ionic molecules for their potential electrolyte use in energy storage applications such as electrochemical cells. Initial research at Virginia Commonwealth University focused on the observed improved stability of smaller molecules like benzene (C6H6) and the improved stability observed when a carbon-nitrogen (CN) atomic pair was substituted for hydrogen. The research team then investigated a similar substitution on the much larger ionic icosahedral cluster of B12H122− using state-of-the-art computational energy calculations. In this configuration, a second electron binding energy of 5.28 eV leads to a stable dianion molecule resulting in a remarkable discovery—the new molecule B12(CN)122− was calculated to have a six-fold increase in the molecular stability compared to B12H122−, making it potentially the most stable doubly ionized molecule in nature. Ab initio molecular dynamics simulation confirmed that the molecular stability continued at high temperatures up to 1500 K.

Publications

H. Zhao, J. Zhou, and P. Jena, “Stability of B12(CN)122-: Implications for lithium and magnesium ion batteries.” Angewandte Chemie International Edition 55, 3704 (2016). [DOI: 10.1002/anie.201600275]

Related Articles Read More >

Stellantis and Factorial validate 375 Wh/kg solid-state EV cells
7 major R&D developments this week: Tariff uncertainty persists, Pfizer sells campus, Scania acquires Northvolt unit
Instant coffee tech brews up high-capacity, eco-friendly battery electrodes
9 major R&D moves this week: J&J’s $55B U.S. bet, NVIDIA CEO calls for 100x AI compute
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE