Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

New Study Suggests Way to Slow Skin Fibrosis in Scleroderma

By Hospital for Special Surgery | November 2, 2016

The prognosis for patients diagnosed with scleroderma – an autoimmune disease characterized by fibrosis of the skin – is not typically a rosy one. With limited treatment options available, those suffering from the disorder can face disabling hardening and tightening of their skin. Scleroderma can also affect the blood vessels, lungs and other internal organs.

New and ongoing research at Hospital for Special Surgery in New York City has identified a possible mechanism behind the fibrosis that occurs in scleroderma – a mechanism that may one day lead to a treatment for the disease.

Published in the Journal of Clinical Investigation on October 10, the study reports that in laboratory research, a population of stem cells called “adipose-derived stromal cells (ADSCs)” is reduced in number in the layer of fat sitting under the skin. It appears that loss of these ADSCs may contribute to the skin fibrosis characteristic of scleroderma.

Moreover, the study authors found that the survival of those ADSCs that do remain beneath the skin in scleroderma are dependent on immune cells called “dendritic cells.” Dendritic cells release a compound called lymphotoxin B that promotes ADSC survival; when antibodies that stimulate the lymphotoxin B receptor were administered with ADSCs to replenish the lost ADSCs, ADSC survival was found to be increased, suggesting a means for reversing the fibrosis of the skin.

“Injecting ADSCs is being tried in scleroderma; the possibility of stimulating the lymphotoxin B pathway to increase the survival of these stem cells is very exciting,” says lead study author Theresa T. Lu, MD, PhD. “By uncovering these mechanisms and targeting them with treatments, perhaps one day we can better treat the disease.”

Dr. Lu also feels this strategy could be used to target stem-cells from other tissue sources in order to treat rheumatological and other conditions — such as lupus and rheumatoid arthritis – and also to facilitate bone and cartilage repair.

In the coming years, Dr. Lu and her colleagues hope to test the applicability of their work in human cells, which could provide scleroderma patients with a welcome treatment option if proven safe and effective. “Improving ADSC therapy would be a major benefit to the field of rheumatology and to patients suffering from scleroderma,” she says.

Related Articles Read More >

Thermo Fisher’s new Orbitrap Excedion Pro targets complex biotherapeutics for drug development
FDA’s new ‘Elsa’ AI set to expedite clinical protocol reviews
Waters touts six-fold robustness with new Xevo TQ Absolute XR
Eli Lilly facility
9 R&D developments this week: Lilly builds major R&D center, Stratolaunch tests hypersonic craft, IBM chief urges AI R&D funding
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE