Research & Development World

  • Home Page
  • Topics
    • Aerospace
    • Archeology
    • Automotive
    • Biotech
    • Chemistry
    • COVID-19
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Market Pulse
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
      • Software
    • Semiconductors
  • 2021 R&D 100 Award Winners
    • R&D 100 Awards
    • 2020 Winners
    • Winner Archive
  • Resources
    • Digital Issues
    • Podcasts
    • Subscribe
  • Global Funding Forecast
  • Webinars

Researchers Push Metals To Their Limits

By Osaka University | June 29, 2017

Modern aircraft and power generation turbines depend on precision-machined parts that can withstand harsh mechanical forces in high-temperature environments. In many cases, higher operating temperatures lead to more efficient performance. This motivates the search for new ultrahigh-temperature metal alloys that can maintain their shape and strength at temperatures where ordinary steel would melt.

Building on their research into a promising mixed alloy, a team of researchers at Osaka University have made a new breakthrough by adding metals to generate a unique structure that shows exceptional performance.

“Our previous alloy was a blend of different transition-metal disilicides, which were arranged in a lamellar structure,” says lead author Koji Hagihara. “Although the alloy’s performance was good, it did not meet requirements for room temperature toughness and still showed some deformation at very high temperatures.”

Transition-metal disilicides are lightweight alloys with good high temperature resistance, ideally suited for ultrahigh-temperature applications. The Osaka team previously combined two different types of transition-metal disilicides to form a microscopic structure with alternating layers of different alloy crystal. This “lamellar” arrangement improved the alloy strength, but some problems remained because of the low strength along the direction parallel to the two-phase interface.

Now, the team has added two new metals to the alloy mixture to form a “cross-lamellar microstructure.” The added metals cause new crystals to grow, which penetrate the crystal layer structure, similar to staples piercing a stack of paper. This effect prevents the deformation parallel to the lamellar interface and considerably improves the mechanical performance of the alloy.

“Other researchers should take note of this unique cross-lamellar microstructure as a way of improving high-temperature creep strength and fracture toughness in ultrahigh temperature alloys,” says group leader Takayoshi Nakano. “The performance of our alloy is now closer to meeting the demands of practical engineering applications. The efficiency gains from using ultrahigh temperature materials in gas turbines and jet engines could have a real impact on CO2emissions and global warming.”

Related Articles Read More >

Breakthrough paves way for photonic sensing at the ultimate quantum limit
TROY awarded $161K National Science Foundation grant
NanoScientific Symposium 2022 now open for registration
Seeing more deeply into nanomaterials
2021 R&D Global Funding Forecast

Need R&D World news in a minute?

We Deliver!
R&D World Enewsletters get you caught up on all the mission critical news you need in research and development. Sign up today.
Enews Signup

R&D World Digital Issues

February 2020 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R& magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • 2021 Global Funding Forecast

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • Home Page
  • Topics
    • Aerospace
    • Archeology
    • Automotive
    • Biotech
    • Chemistry
    • COVID-19
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Market Pulse
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
      • Software
    • Semiconductors
  • 2021 R&D 100 Award Winners
    • R&D 100 Awards
    • 2020 Winners
    • Winner Archive
  • Resources
    • Digital Issues
    • Podcasts
    • Subscribe
  • Global Funding Forecast
  • Webinars