Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • Educational Assets
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Researchers set world record for highest surface area material

By R&D Editors | September 10, 2012

SurfaceArea-250

A research team at Northwestern University has synthesized, characterized, and computationally simulated/validated the behavior of two new metal–organic framework (MOF) materials displaying the highest experimental Brunauer–Emmett–Teller (BET) surface areas of any porous materials reported to date (7000 m2/g). Image: Northwestern University

Northwestern
University researchers have broken a world record by creating two new
synthetic materials with the greatest amount of surface areas reported
to date. Named NU-109 and NU-110, the materials belong to a class of
crystalline nanostructure known as metal-organic frameworks (MOFs) that
are promising vessels for natural gas storage for vehicles, catalysts,
and other sustainable materials chemistry.

The
materials’ promise lies in their vast internal surface area. If the
internal surface area of one NU-110 crystal the size of a grain of salt
could be unfolded, the surface area would cover a desktop. Put another
way, the internal surface area of one gram of NU-110 would cover
one-and-a-half football fields.

A
paper describing the findings, “Metal-organic Framework Materials with
Ultrahigh Surface Areas: Is the Sky the Limit?” was published August 20
in the Journal of the American Chemical Society.

The
research team, led by Omar Farha, research associate professor of
chemistry in the Weinberg College of Arts and Sciences, has synthesized,
characterized, and computationally simulated the behavior of the two
MOFs that display the highest experimental Brunauer-Emmett-Teller
surface areas of any porous material on record, 7,000 m2/g; that is, one
kilogram of the material contains an internal surface area that could
cover seven square kilometers. (Brunauer-Emmett-Teller, or BET, is an
analysis technique for measuring the surface area of a material.)

The
extremely high surface area, which is normally not accessible due to
solvent molecules that stay trapped within the pores, was achieved using
a carbon dioxide activation technique. As opposed to heating, which can
remove the solvent but also damage the MOF material, the carbon
dioxide-based technique removes the solvent gently and leaves the pores
completely intact.

The
development could rapidly lead to further advances. MOFs are composed
of organic linkers held together by metal atoms, resulting in a
molecular cage-like structure. The researchers believe they may be able
to more than double the surface area of the materials by using less
bulky linker units in the materials’ design.

The
research comes from the labs of Joseph T. Hupp, professor of chemistry
in Weinberg, and Randall Q. Snurr, professor of chemical and biological
engineering at the McCormick School of Engineering.

Other
authors include SonBinh Nguyen, professor of chemistry in Weinberg;
Ibrahim Eryazici, Nak Cheon Jeong, Brad G. Hauser, Amy A. Sarjeant, and
Christopher E. Wilmer, all of Northwestern; and A. Özgür Yazaydin of the
University of Surrey in the United Kingdom.

The
MOF-designing and -synthesizing technology is being commercialized by
NuMat Technologies, a Northwestern startup that has won more than $1
million in business plan competitions since incorporating in February.

Metal-organic Framework Materials with Ultrahigh Surface Areas: Is the Sky the Limit?

Source: Northwestern University

Related Articles Read More >

New flexible plastic without ‘forever’ chemicals for wearable electronics
SandboxAQ’s SAIR dataset turns 5.2 M protein‑ligand structures into ground‑truth fuel for AI
Marine-biodegradable polymer is as strong as nylon
Unilever R&D head lifts lid on AI, robots and beating the ‘grease gap’
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • Educational Assets
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE