Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Role Identified for Key Protein in Regeneration of Damaged Newt Retinas

By University of Tsukuba | October 3, 2016

University of Tsukuba-led research group identify Pax6 as the protein regulator of retinal regeneration in newts. Source: University of Tsukuba

At the back of the retina in adult vertebrate eyes is a highly differentiated layer of cells known as the retinal pigment epithelium (RPE). These cells do not normally multiply or migrate in adults, but in humans they do so in response to retinal trauma. They then pass through a transitional state of multipotency, with the potential to become more than one cell type, eventually transforming into cells that heal the wound, but with a resulting loss of vision. This causes a retinal disorder such as proliferative vitreoretinopathy (PVR). In the adult newt, a similar process is seen but with a key difference: it results in the regeneration of a fully functional retina and RPE, even if the retina has been surgically removed from the eye. The mechanism underlying this regenerative process in newts has remained a mystery, but researchers led by the University of Tsukuba in Japan have now shed light on the subject by creating a transgenic newt lacking expression of the Pax6 protein in RPE stem cells. In this type of newt, retinal regeneration was inhibited, and RPE stem cells instead resembled human RPE cells recovering from trauma. The study was reported in Scientific Reports.

Pax6 controls formation of tissues and organs during embryonic development, and regulates gene expression in parts of the eye after birth. It was also previously found to be re-expressed in RPE cells undergoing reprogramming. Silencing of the Pax6 gene in this new study caused abnormalities in the behavior of RPE cells after the retina was removed. The cells were able to multiply and migrate, but were unable to develop either into a new retina or renew the RPE. “We observed the expression of proteins such as vimentin, N-cadherin, and smooth muscle actin in RPE cells lacking Pax6 expression,” first author Martin Miguel Casco-Robles says. “These cells formed groups of structures that resembled the membranes that form to heal the wound in PVR.”

Knockdown of Pax6 demonstrated its importance in determining the fate of RPE cells either toward retinal regeneration or acquiring a membranous phenotype. “The evolution of the regenerative process in newts is likely to have occurred following modification of an existing mechanism that causes retinal disorders, such as PVR,” corresponding author Chikafumi Chiba says. “If we can learn to control this mechanism, it might provide a new treatment for retinal problems, capable of regenerating retinas in affected patients.”

Related Articles Read More >

Eli Lilly facility
9 R&D developments this week: Lilly builds major R&D center, Stratolaunch tests hypersonic craft, IBM chief urges AI R&D funding
professional photo of wooly mammoth in nature --ar 2:1 --personalize sq85hce --v 6.1 Job ID: 47185eaa-b213-4624-8bee-44f9e882feaa
Why science ethicists are sounding skepticism and alarm on ‘de-extinction’
ALAFIA system speeds complex molecular simulations for University of Miami drug research
3d rendered illustration of the anatomy of a cancer cell
Funding flows to obesity, oncology and immunology: 2024 sales data show where science is paying off
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE