Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Scientists Develop New Technique for Creating Entangled Photon States

By Lomonosov Moscow State University | February 14, 2017

These are photon beams. Photo was taken by CCD-matrix. Source: Egor Kovlakov

Members of the Faculty of Physics, the Lomonosov Moscow State University have elaborated a new technique for creation of entangled photon states, exhibiting photon pairs, which get correlated (interrelated) with each other. Scientists have described their research in an article, published in the journal Physical Review Letters.

Physicists from the Lomonosov Moscow State University have studied an entangled photon state, in which the state is determined only for the whole system and not for each separate particle.

Stanislav Straupe, Doctor of Sciences in Physics and Mathematics, a member of the Quantum Electronics Department and Quantum Optical Technologies Laboratory at the Faculty of Physics, the Lomonosov Moscow State University, and one of the article co-authors says the following. He explains: “Entangled states are typical and general. The only problem is in the point that for the majority of particles interaction with the environment destroys the entanglement. And photons hardly ever interact with other particles, thus they are a very convenient object for experiments in this sphere. The largest part of light sources we face in our life is a classical one — for instance, the Sun, stars, incandescent lamps and so on. Coherent laser radiation also belongs to the classical part. To create nonclassical light isn’t an easy thing. You could, for instance, isolate a single atom or an artificial structure like a quantum dot and detect its radiation – this is the way for single photons obtaining.”

An effect of spontaneous parametric down-conversion in nonlinear crystal is most commonly used for obtaining of entangled photon states. In this process a laser pumping photon splits into two. As this takes place photon states get correlated, entangled due to the conservation laws. Egor Kovlakov, a doctoral student from the Quantum Electronics Department at the Radio Physics Division of the Faculty of Physics, the Lomonosov Moscow State University and an article co-author shares: “In our project we’ve offered and tested a new technique of the spatial entanglement creation. Photon pairs, generated in our experiment, propagate by beams, which get correlated in “spatial profile”. Efficiency is the key peculiarity of our technique in comparison with the previously known ones.”

Studies of entangled photon states started in 1970-s years and nowadays they are most actively used in quantum cryptography, an area relating to quantum information transfer and quantum communication.

Stanislav Straupe notices: “Quantum cryptography is not the only one of the possible applications, but at the moment it is the most developed one. Unlike classical communication, where it’s not important which alphabet is used for message coding and it’s enough to use a binary one (0 or 1), everything is more complicated in quantum communication. It turns out that enhancement of alphabet dimension not only increases amount of information coded in one photon, but also strengthens communication security. That’s why it’d be interesting to develop quantum communication systems, based also on information coding in spatial profile of photons.” The scientists suppose that in the future their solution will be applied for creation of an optical channel with a satellite, where you can’t install optical fiber (an optical fiber guide) — a basis for fiber-optic communication.

Related Articles Read More >

White House fast-tracks nuclear R&D while mandating ‘gold standard science’
LLNL deposits quantum dots on corrugated IR chips in a single step
Aardvark AI forecasts rival supercomputer simulations while using over 99.9% less compute
Physicists create supersolid state of light, blending properties of liquids and solids
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE