Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Sticky Sensor Spares Patients from Painful IV Drops

By A*STAR | April 17, 2017

The sensor patch can be embedded into the dressing that fixes a cannula in place. Image: A*STAR Institute of Microelectronics

A new adhesive sensor can save patients the discomfort and pain resulting from leaky intravenous drips.

A significant number of hospitalized patients require the insertion of a thin tube, called a cannula, into a vein, usually in their hand or arm, to facilitate easy and sometimes lengthy delivery of drugs. If the vein is small or fragile, such as is often the case in infants and the elderly, or the cannula is misplaced or moves, the drugs can leak into the surrounding tissue, causing swelling, pain, and sometimes, in severe cases, death of the tissues and impaired function of the limb. Clinicians and nurses do monitor the cannula site for leakage, but this can sometimes be challenging and very small leakages can be missed.

Researchers at the Agency for Science, Technology and Research (A*STAR) Institute of Microelectronics in collaboration with clinicians from KK Women’s and Children’s Hospital in Singapore have developed an adhesive sensor that can detect as little as two milliliters of leaked fluids. The sensor can be incorporated into the dressing normally used to fix a cannula in place.

It is made of very thin electrodes embedded between two elastic polymer substrates. The electrodes stretch when a leakage into the tissues stretches the skin. This in turn changes the resistance in the sensing electrode, which is detected by a “reader” connected to the sensor. The reader is battery-run and reusable, while the sensor patch is disposable and does not require a battery.

The team has successfully tested its sensor in lab experiments. The researchers next plan to develop a wireless module that can wirelessly alert healthcare workers of a leakage through a mobile application, allowing for immediate intervention.

They will also work on making the sensor more cost-effective: they expect it to cost less than a dollar per sensor patch. Further work will include conducting more comprehensive clinical trials for the sensor patch system.

Source: A*STAR

 

Related Articles Read More >

IoT
Sensor data, reimagined: When 90% less data can fuel 100x gains in efficiency in AI projects
Sandia Labs joins with other institutions to tackle AI energy challenges with microelectronics research
LG
Stretchable batteries and body-conformable electronics poised to advance in 2025
Critical Spaces Control Platform
Phoenix Critical Spaces Control Platform uses automation to direct airflow
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE