Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • 2025 R&D 100 Award Winners
    • 2025 Professional Award Winners
    • 2025 Special Recognition Winners
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
  • Resources
    • Research Reports
    • Digital Issues
    • Educational Assets
    • R&D Index
    • Subscribe
    • Video
    • Webinars
    • Content submission guidelines for R&D World
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

SwRI develops new model, controller to optimize fast charging of electric vehicles

By Heather Hall | March 18, 2021

Southwest Research Institute engineers use hardware in the loop controllers, mobile data acquisition systems and other instrumentation to collect battery performance information from lithium ion batteries and electric vehicles. Credit: Courtesy of SwRI

Engineers at Southwest Research Institute are using internal research funds to tackle challenges with fast charging to reduce the time needed to recharge electric vehicles (EVs).

As electric vehicles gain popularity, consumers expect the switch to battery-reliant platforms to be seamless, with the same acceleration, performance and comfort of vehicles powered by fossil fuels. For the most part, manufacturers have delivered, but technology still lags in some areas, such as battery recharge. While consumers need only a few minutes to fill a tank with fuel before they can get back on the road, an electric vehicle (EV) typically needs hours to do the same.

Fast charging converts the AC power found in homes to the DC power required by batteries within the charging station itself to significantly speed up charging. However, that speed introduces new challenges.

Fast recharging maximizes the transfer of lithium ions within a battery pack. At these high rates, ions can accumulate on the surface of the battery’s anode and deposit metallic lithium by a process called “lithium plating,” which can reduce battery performance and, if left unchecked, cause it to short circuit and fail.

“The electrochemistry that causes lithium plating is complex and not completely understood,” said Dr. Bapiraju Surampudi, a staff engineer in SwRI’s Powertrain Engineering Division. “Our physics-based model allows us to detect, in real time, the occurrence of lithium plating so we can adjust the charging rate to prevent battery damage while also allowing for shorter charging times.”

SwRI developed and calibrated a linearized battery model for a 57 Ah nickel manganese cobalt (NMC) cell, successfully predicting when lithium plating is occurring. The model uses differential equations to calculate various battery inner states, with no need for additional instrumentation or resources. Other state-of-the-art techniques to detect lithium plating are non-real time and involve destructive physical analysis of the cell.

The SwRI model successfully predicted the cell voltage to within ±5% of experimental data. The team then developed a model-based adaptive fast charge controller to optimize the charge profile for the NMC cell. The controller includes a learning feature that adjusts the charge current based on the previous cycle’s charge efficiency. The controller “learns” the optimal charge profile after 10 to 20 charge cycles and balances durability, safety and performance in real time.

The team compared the SwRI charge controller to two baseline charge profiles to assess its effectiveness. The first baseline profile uses an industry-standard constant current, constant voltage strategy to intentionally initiate lithium plating. The samples aged with this profile showed significant battery capacity fade, or loss. The second baseline profile was recorded from an electric vehicle at a fast charger and enabled meaningful comparison of charge time.

“The SwRI charge controller showed several improvements compared to the two baseline profiles, including a significant decrease in capacity fade, a 35% reduction in battery charge time and an average charge efficiency of 89%,” Surampudi said. “While pleased with these results, we believe there are additional improvements to be made.”

SwRI has filed for a patent on this development and will expand the technology for use by original equipment manufacturers and battery manufacturers, as well as for electrified military vehicles.

 

Related Articles Read More >

California microgrid pilots EV integration model for wildfire-prone regions
Solving the EV charger problem with streetlights
New scalable supercapacitors store more energy using graphene
Probiotics power a bioresorbable battery that can run from 4 to 100+ minutes
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2025 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

R&D 100 Awards
Research & Development World
  • Subscribe to R&D World Magazine
  • Sign up for R&D World’s newsletter
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2026 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • 2025 R&D 100 Award Winners
    • 2025 Professional Award Winners
    • 2025 Special Recognition Winners
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
  • Resources
    • Research Reports
    • Digital Issues
    • Educational Assets
    • R&D Index
    • Subscribe
    • Video
    • Webinars
    • Content submission guidelines for R&D World
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE