Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Researchers pair wearable sensors with machine learning for better balance assessment

By Brian Buntz | June 26, 2024

Researchers at Florida Atlantic University, some of whom are pictured, have developed a novel method using wearable sensors and AI that could reshape balance assessment practices.

Researchers at Florida Atlantic University, some of whom are pictured, have developed a novel method using wearable sensors and AI that could reshape balance assessment practices. Credit: Alex Dolce, Florida Atlantic University

Traditionally, physicians have relied on subjective observations and specialized equipment to gauge balance in individuals with conditions such as Parkinson’s disease, neurological injuries, and age-related decline. Such methods — especially subjective ones — can lack precision, are difficult to administer remotely, and can be inconsistent. To address such limitations, researchers from Florida Atlantic University have developed a novel approach using wearable sensors and advanced machine learning algorithms that could redefine balance assessment practices.

The research is published in Frontiers in Digital Health.

The sensor setup

The researchers used wearable Inertial Measurement Unit (IMU) sensors placed on five body locations: ankle, lumbar, sternum, wrist, and arm. Data collection followed the Modified Clinical Test of Sensory Interaction on Balance (m-CTSIB) protocol, testing four sensory conditions: eyes open and closed on stable and foam surfaces. Each test lasted roughly 11 seconds, simulating continuous balance scenarios.

The scientists then preprocessed and extracted features from the raw sensor data. They then applied a trio of machine learning algorithms to estimate m-CTSIB scores: multiple linear regression, support vector regression, and the open-source software library XGBOOST.

Training an AI balance detective

The researchers trained and validated the models with wearable sensor data as input and corresponding m-CTSIB scores from Falltrak II as ground truth labels.

They used cross-validation methods, correlation with ground truth scores, and Mean Absolute Error (MAE) measures, to evaluate the performance

The XGBOOST model using lumbar sensor data yielded the best results, demonstrating high accuracy and strong correlation with ground truth balance scores. The lumbar and dominant ankle sensors produced the highest performance in balance score estimation.

Toward more precise balance assessement

In Frontiers in Digital Health, the researchers concluded that the “findings pave the way for more precise and convenient balance assessments.” They state the approach has “immense potential to enhance balance performance assessment and management in various settings, including clinical environments, rehabilitation, and remote monitoring.”

Related Articles Read More >

2025 R&D layoffs tracker tops 92,000
Is your factory (or lab) ready to think? An insider’s take on next-gen automation and what really works
8 reasons all is not well in GenAI land
Efficiency first: Sandia’s new director balances AI drive with deterrent work
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE