Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • 2025 R&D 100 Award Winners
    • 2025 Professional Award Winners
    • 2025 Special Recognition Winners
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
  • Resources
    • Research Reports
    • Digital Issues
    • Educational Assets
    • R&D Index
    • Subscribe
    • Video
    • Webinars
    • Content submission guidelines for R&D World
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Wind Turbines that Learn Like Humans

By R&D Editors | April 2, 2012

Wind Turbines that Learn Like Humans

Depending on the weather, wind turbines can face whispering breezes or gale-force gusts. Such variable conditions make extracting the maximum power from the turbines a tricky control problem, but a collaboration of Chinese researchers may have found a novel solution in human-inspired learning models.

Most turbines are designed to produce maximum allowable power once winds reach a certain speed, called the rated speed. In winds above or below the rated speed, control systems can make changes to the turbine system, such as modifying the angle of the blades or the electromagnetic torque of the generator. These changes help keep the power efficiency high in low winds and protect the turbine from damage in high winds.

Many control systems rely on complex and computationally expensive models of the turbine’s behavior, but the Chinese group decided to experiment with a different approach. The researchers developed a biologically inspired control system, described in the American Institute of Physics’ Journal of Renewable and Sustainable Energy, which used memory of past control experiences and their outcomes to generate new actions. In simulations, the controller showed initially poor results, but quickly learned how to improve, matching the performance of a more traditional control system overall.

The memory-based system is attractive because of its simplicity, the researchers write, concluding that “the human-memory-based method holds great promise for enhancing the efficiency of wind power conversion.”

Citation: “A Bio-inspired Approach to Enhancing Wind Power Conversion” is published in the Journal of Renewable and Sustainable Energy. Authors: YongDuan Song (1, 2), WenChuan Cai (2), Peng Li, (2), and YongSheng Hu (3).

(1) School of Automation, Chongqing University, China

(2) School of Electronic and Information Engineering, Beijing Jiaotong University, China

(3) China Datang Corp. Renewable Power Co. Ltd., Beijing, China

Related Articles Read More >

Satellite data sheds light on wetland health in cloud-covered regions
Alice & Bob outlines roadmap to 100 logical qubits by 2030
Idemitsu expands partnership with Enthought to accelerate battery material innovation
top 25 AI patent winners of 2024
From NVIDIA to SAP: How 25 global AI patent leaders fared in 2024
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2025 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Sign up for R&D World’s newsletter
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • 2025 R&D 100 Award Winners
    • 2025 Professional Award Winners
    • 2025 Special Recognition Winners
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
  • Resources
    • Research Reports
    • Digital Issues
    • Educational Assets
    • R&D Index
    • Subscribe
    • Video
    • Webinars
    • Content submission guidelines for R&D World
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE