Research & Development World

  • Home Page
  • Topics
    • Aerospace
    • Archeology
    • Automotive
    • Biotech
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Market Pulse
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Battery Technology
    • Imaging
    • Nanotechnology
    • Semiconductors
  • Controlled Environments
    • Cleanrooms
    • Graphene
    • Lasers
    • Regulations/Standards
    • Sensors
  • Scientific Computing
    • Big Data
    • HPC/Supercomputing
    • Informatics
    • Security
    • Software
  • R&D 100 Awards
    • ENTER NOW
    • 2020 Winners
    • Winner Archive
    • R&D 100 Conference
  • Resources
    • Digital Issues
    • Podcasts
    • Subscribe
  • 2021 Funding Forecast
  • COVID-19

Binary Solvent Mixture Boosting High Efficiency of Polymer Solar Cells

By Science China Press | June 12, 2019


Tremendous progress of organic solar cells (OSCs) has been exemplified by the use of non-fullerene electron acceptors (NFAs) in the past few years. Compared with fullerene derivative acceptors, NFAs show a multitude of advantages including tunable energy levels, broad absorption spectrum and strong light absorption ability, as well as high carrier mobility. To further improve the efficiency of non-fullerene OSCs, fluorine (F) or chlorine (Cl) atoms have been introduced into the chemical structure of NFAs as an effective approach to modulate the HOMO and LUMO levels. With a small Van der Waals radius and large electronegativity, the F atom improves the molecular planarity and aggregation tendency of NFAs, as well as increasing their crystallization ability.

However, the tendency of fluorinated NFAs to self-organize into crystals usually leads to excessive phase separation, which has been found to increase the film surface roughness to enlarge charge recombination at the electrode interface, and more importantly to reduce the bulk heterojunction interfaces within the photoactive layer; effects that all lead to reduced power efficiency.

Very recently, Professor Tao Wang's group in Wuhan University of Technology demonstrated an effective approach to tune the molecular organization of a fluorinated NFA (INPIC-4F), and its phase separation with the donor PBDB-T, by varying the casting solvent (CB, CF and their mixtures). When a high boiling-point solvent CB was employed as the casting solvent, INPIC-4F formed lamellar crystals which further grow into micron-scale spherulites, resulting in a low PCE of 8.1% only. When the low boiling-point solvent CF was used, the crystallization of INPIC-4F has been suppressed and the low structure order leads to a moderate PCE of 11.4%. By using binary solvent mixture (CB:CF=1.5:1, v/v), the efficiency of PBDB-T:INPIC-4F non-fullerene OSCs was improved to 13.1%. These results show great promise of binary solvent strategy to control the molecular order and nanoscale morphology for high efficiency non-fullerene solar cells.

 

Related Articles Read More >

Department of Energy to invest $25M in polymer upcyling, plastic waste reuse research
Study reveals platinum’s role in clean fuel conversion
R&D 100 winner of the day: Versatile Cold Spray (VCS)
An anode-free zinc battery that could someday store renewable energy

Need R&D World news in a minute?

We Deliver!
R&D World Enewsletters get you caught up on all the mission critical news you need in research and development. Sign up today.
Enews Signup
Tweets by @RandDWorld

R&D World Digital Issues

February 2020 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R& magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • 2021 Global Funding Forecast

Copyright © 2021 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • Home Page
  • Topics
    • Aerospace
    • Archeology
    • Automotive
    • Biotech
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Market Pulse
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Battery Technology
    • Imaging
    • Nanotechnology
    • Semiconductors
  • Controlled Environments
    • Cleanrooms
    • Graphene
    • Lasers
    • Regulations/Standards
    • Sensors
  • Scientific Computing
    • Big Data
    • HPC/Supercomputing
    • Informatics
    • Security
    • Software
  • R&D 100 Awards
    • ENTER NOW
    • 2020 Winners
    • Winner Archive
    • R&D 100 Conference
  • Resources
    • Digital Issues
    • Podcasts
    • Subscribe
  • 2021 Funding Forecast
  • COVID-19