Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Brain-on-a-Chip Grown on Semiconductor Wafer

By Australian National University | May 15, 2017

Dr. Vini Gautam from the Research School of Engineering at ANU. Image: Stuart Hay, ANU

Australian National University researchers have developed a suitable material to allow brain cells to grow and form predictable circuits, which could lead to the development of prosthetics for the brain.

Researchers grew the brain cells on a semiconductor wafer patterned with nanowires which act as a scaffold to guide the growth of brain cells.

Lead researcher Dr. Vini Gautam from the Research School of Engineering at ANU says the scaffold provides a platform to study the growth of the brain cells and how they connect with each other.

“The project will provide new insights into the development of neuro-prosthetics which can help the brain recover after damage due to an accident, stroke or degenerative neurological diseases,” Gautam says.

The study is the first to show the neuronal circuits grown on the nanowire scaffolds were functional and highly interconnected, opening the potential to apply their scaffold design for neuro-prosthetics.

Project group leader Dr. Vincent Daria from The John Curtin School of Medical Research hopes to use the brain on a chip to understand how neurons in the brain form computing circuits and eventually process information.

“Unlike other prosthetics like an artificial limb, neurons need to connect synaptically, which form the basis of information processing in the brain during sensory input, cognition, learning and memory,” Daria says.

“Using a particular nanowire geometry, we have shown that the neurons are highly interconnected and predictably form functional circuits.”

Daria says it was important to build up the appropriate environment where neurons can be predictably connected into functional circuits.

“We were able to make predictive connections between the neurons and demonstrated them to be functional with neurons firing synchronously,” he says.

“This work could open up new research model that builds up a stronger connection between materials nanotechnology with neuroscience.”

The research was a multi-disciplinary collaboration between physics, engineering, and neuroscience.

The nanowires were fabricated by a group led by Professor Chennupati Jagadish at the Research School of Physics and Engineering at ANU.

The research has been published in Nano Letters.

Source: Australian National University

Related Articles Read More >

TSMC’s N3P hits mass production, with N3X customer sampling slated for Q3–Q4 2025a
7 major R&D developments this week: Tariff uncertainty persists, Pfizer sells campus, Scania acquires Northvolt unit
While Trump tariffs spare phones/PCs, R&D could faces GPU cost pressures
Why IBM predicts quantum advantage within two years
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE