Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Creating the fastest outdoor wireless internet connection

By R&D Editors | December 19, 2014

Source: Lancaster University

Lancaster University engineers are to head up a European team working on the world’s first W-band wireless system, heralding the arrival of cost effective, high speed internet everywhere, every time.

The ground-breaking £2.8 million TWEETHER project, funded by Horizon 2020, the biggest EU research and innovation programme ever, will set an important milestone in ‘millimeter wave technology’ for high speed wireless mobile and fixed point Internet.

Millimeter waves – extremely high frequency waves found in the spectrum between microwaves and infrared waves – are deemed to be the most promising and cost effective solution for the future.

The TWEETHER project will result in a powerful and compact transmission hub, based on a novel travelling wave tube power amplifier and an advanced chipset in a compact terminal, with performance far outweighing any other technology.                                                     

After three years of design and development, the system will be tested in a real operating environment.

The project has been sparked by the huge rise in demand for mobile data, which places unprecedented strains on networks to deliver more and more capacity.

Millions of users are now suffering a ‘digital divide’ because of the very limited availability of high data rate in most residential, sub urban or rural areas, where optical fibre, often slow and expensive to install, is not available.

“The enormous flux of data transferred via wireless networks, increasing at a super-high pace, makes today’s state-of-the-art networks quickly outdated, says Lancaster University’s Professor of Electronics Claudio Paoloni, who is also the Project Co-ordinator.

“The huge spread of portable smart phone, tablets and the increasing demand of services hungry for data, such as high definition TV, videoconferencing and online games, are posing formidable challenges with the congestion of the available spectrum and the limits of present technology.”

Professor Paoloni said the answer was the exploitation of unused portions of the spectrum but at higher frequencies.

The recent outstanding advancements in the field of vacuum electron devices and solid state electronics using millimetre wave frequencies opens the route for the breakthrough in wireless high speed data communications.

Source: Lancaster University

Related Articles Read More >

Eli Lilly facility
9 R&D developments this week: Lilly builds major R&D center, Stratolaunch tests hypersonic craft, IBM chief urges AI R&D funding
Five cases where shaky science snowballed into public confusion
Caltech, Fermilab, and collaborators test quantum sensors for future particle physics experiments
2025 R&D layoffs tracker: 83,543 and counting
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE