Research & Development World

  • Home Page
  • Topics
    • Aerospace
    • Archeology
    • Automotive
    • Biotech
    • Chemistry
    • COVID-19
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Market Pulse
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
      • Software
    • Semiconductors
  • 2021 R&D 100 Award Winners
    • R&D 100 Awards
    • 2020 Winners
    • Winner Archive
  • Resources
    • Digital Issues
    • Podcasts
    • Subscribe
  • Global Funding Forecast
  • Webinars

Light-shaking Device is a Breakthrough for Photonics

By Yale School of Engineering and Applied Science | March 13, 2019

The ability to control light with electronics is a critical part of advanced photonics, a field with applications that include telecommunications and precision time-keeping. But the limits of available optical materials have stymied efforts to achieve greater efficiency.

Researchers at Yale University, though, have developed a device that combines mechanical vibration and optical fields to better control light particles. The device has demonstrated an efficient on-chip shaping of photons enabled by nanomechanics driven at microwave frequencies.

Led by Hong Tang, the Llewellyn West Jones, Jr. Professor of Electrical Engineering, Applied Physics & Physics, the results of their work are published in Nature Photonics.

Currently, the most common technique for manipulating photon frequency is with what’s known as nonlinear optical effects, in which a strong laser essentially acts as a pump, controlling the color and pulse shape of a signal photon by providing extra photons to mix with the original one. The effect is weak, though, so the process requires a very strong laser, which creates “noise”—the loss of certain quantum properties.

To break beyond these limits, the Yale researchers have created a device that consists of a series of waveguides—structures through which microwaves are directed. Light and microwave are sent through the device, and the light wends its way through alternating suspended and clamped waveguides on a single chip. This creates a positive and negative effect, corresponding to the microwave, which always has a positive and a negative component. The light spirals in each of the waveguides to prolong the interaction and maximize efficiency.

“The deeper the modulation, the better,” Tang said, “and you can have better control of the photon.”

Mechanical vibrations modulate the optical phase in each suspended waveguide spiral. The mechanical vibrations essentially ‘shake’ the photons, dispersing them as if they were grains of sand. This accumulates to generate what’s known as deep phase modulation.

Previously, the Tang lab had created a single waveguide device. With this new device, the alternating positive and negative waveguides dramatically boost efficiency.

Other contributors to the paper include lead author Linran Fan, Chang-Ling Zou, and Na Zhu.

Related Articles Read More >

MKS Unveils New Spectra-Physics Broadly-Tunable Ultrafast Laser for Multiphoton Imaging
Organic Laser Diodes Move From Dream to Reality
Proton Beam Energy Doubled with Colliding Lasers
Ultra-thin Superlattices for Nanophotonics Formed from Gold Nanoparticles
2021 R&D Global Funding Forecast

Need R&D World news in a minute?

We Deliver!
R&D World Enewsletters get you caught up on all the mission critical news you need in research and development. Sign up today.
Enews Signup

R&D World Digital Issues

February 2020 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R& magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • 2022 Global Funding Forecast

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • Home Page
  • Topics
    • Aerospace
    • Archeology
    • Automotive
    • Biotech
    • Chemistry
    • COVID-19
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Market Pulse
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
      • Software
    • Semiconductors
  • 2021 R&D 100 Award Winners
    • R&D 100 Awards
    • 2020 Winners
    • Winner Archive
  • Resources
    • Digital Issues
    • Podcasts
    • Subscribe
  • Global Funding Forecast
  • Webinars