Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Mass animal die-offs may be increasing

By R&D Editors | January 15, 2015

Large numbers of dead sunfish and largemouth bass in April 2014 following a severe winter on Wintergreen Lake, Kalamazoo County, Mic. Image: G. MittelbachMass die-offs of animals may be increasing in frequency and—for birds, fishes and marine invertebrates—in severity as well, according to a study of 727 mass mortality events since 1940.

Despite the ecological importance of individual mass mortality events, in which a larger than normal number of individuals die within a population, little research has been conducted on patterns across mass mortality events. The new study will help researchers better assess trends in mass mortality events and their causes, according to the authors of the paper in the Proceedings of the National Academy of Sciences.

“The initial patterns are surprising, in terms of the documented changes to frequencies of occurrences, magnitudes of each event, and the causes of mass mortality,” said Samuel Fey, a postdoctoral fellow in the Dept. of Ecology and Evolutionary Biology at Yale Univ. and co-lead author of the paper. “These data also show that we have a lot of room to improve how we document and study these types of rare events.”

Fey, along with fellow researchers at the Univ. of San Diego and Univ. of California-Berkeley, report that the magnitude of the die-offs has increased in birds, fishes and marine invertebrates, held steady among mammals, and decreased in frogs and amphibians. The authors recognized that more scientific research has been done on mass mortality events in the last few decades but said even accounting for this “discovery bias” does not explain all of the increase in such events. The increase in mass mortality events appears to be associated with a rise in disease emergence, biotoxicity and multiple interacting stressors, they note.

Overall, disease was the primary culprit, accounting for 26% of the mass die-offs. The impacts of direct human activity, primarily from environmental contamination, caused 19% of such events. Another major cause was biotoxicity triggered by events such as algae blooms, rapid increases of algae in water systems. Processes directly influenced by climate—such as weather extremes, thermal stress, oxygen stress or starvation—also contributed accounted collectively for about 25% of mass mortality events.

The most severe events were those with multiple causes, the paper shows.

“This study should improve our understanding of the continuum of mortality patterns and processes that exist between background mortality levels and species-level extinctions,” Fey said.

Source: Yale Univ.

Related Articles Read More >

Floating solar mats clean polluted water — and generate power
New AI model offers faster, adaptive CO₂ retrieval from satellite data
8 major R&D moves this week: Samsung invests record $24B while Porsche cuts 3,900 jobs
Ex-Google AI team launches “Generation,” an AI-driven fragrance venture
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE