Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

More Individual Therapy for Blood Cancer Patients

By Goethe University Frankfurt | January 13, 2017

Because it is impossible to predict which acute myeloid leukaemia (AML) patients will benefit, all patients are routinely treated with chemotherapy although only some will respond to the treatment. Researchers from Goethe-University Frankfurt have now discovered a novel biomarker that enables the detection of therapy responders and non-responders with high accuracy. In addition, their research reveals new hope for patients who currently cannot be effectively treated.

The anti-cancer drug cytarabine provides the basis of chemotherapies directed against AML. Cytarabine needs to be activated in cancer cells by the addition of phosphate groups to exert its anti-cancer effects. Prof Jindrich Cinatl (Institut für Medizinische Virologie, Goethe-Universität, Acting Director: Prof Volkhard Kempf) investigated with his research group (funded by the Frankfurter Stiftung für krebskranke Kinder) cytarabine-resistant AML cells from the Resistant Cancer Cell Line (RCCL) collection that he runs together with Prof Martin Michaelis (University of Kent, Canterbury, UK). Prof Cinatl discovered that the toxicity of cytarabine against AML cells correlates with the expression of the cellular enzyme SAMHD1, which enables to predict the sensitivity of AML cells to cytarabine.

Following this initial finding, a consortium led by Prof Cinatl together with Prof Oliver Keppler (who moved from the Institut für Medizinische Virologie, Goethe-Universität to Ludwig-Maximilians-Universität, München during the project) showed that SAMHD1 removes the phosphate residues from the active form of cytarabine and thereby reverses it into its inactive state. In a cooperation with clinicians (led by Prof Hubert Serve, Medizinische Klinik II, Goethe-Universität) it was shown that SAMHD1 levels determined in leukaemia cells also enabled the prediction of the response of AML patients to cytarabine-based chemotherapies with high accuracy. This introduces SAMHD1 as clinical biomarker that can guide cytarabine-based chemotherapies only to such patients that are very likely to respond and spares patients who are unlikely to respond from toxic side effects. In addition, the Frankfurt-led team showed that inhibition of SAMHD1 effectively sensitises cytarabine-resistant AML cells to cytarabine-based chemotherapies, opening future prospects for the treatment of patients for whom currently no effective therapy exists.

Related Articles Read More >

Eli Lilly facility
9 R&D developments this week: Lilly builds major R&D center, Stratolaunch tests hypersonic craft, IBM chief urges AI R&D funding
professional photo of wooly mammoth in nature --ar 2:1 --personalize sq85hce --v 6.1 Job ID: 47185eaa-b213-4624-8bee-44f9e882feaa
Why science ethicists are sounding skepticism and alarm on ‘de-extinction’
ALAFIA system speeds complex molecular simulations for University of Miami drug research
3d rendered illustration of the anatomy of a cancer cell
Funding flows to obesity, oncology and immunology: 2024 sales data show where science is paying off
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE