Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

New Technology Makes A.I. More Private and Portable

By University of Waterloo | November 14, 2017

Technology developed at the University of Waterloo is paving the way for artificial intelligence (AI) to break free of the internet and cloud computing.

New deep-learning AI software produced with that technology is compact enough to fit on mobile computer chips for use in everything from smartphones to industrial robots.

That would allow devices to operate independent of the internet while using AI that performs almost as well as tethered neural networks.

“We feel this has enormous potential,” said Alexander Wong, a systems design engineering professor and Waterloo and co-creator of the technology. “This could be an enabler in many fields where people are struggling to get deep-learning AI in an operational form.”

The use of stand-alone deep-learning AI could lead to much lower data processing and transmission costs, greater privacy and use in areas where existing technology is impractical due to expense or other factors.

Deep-learning AI, which mimics the human brain by processing data through layers and layers of artificial neurons, typically requires considerable computational power, memory and energy to function.

Researchers took a page from evolutionary forces in nature to make that AI far more efficient by placing it in a virtual environment, then progressively and repeatedly depriving it of resources.

The deep-learning AI responds by adapting and changing itself to keep functioning each time computational power and memory are taken away.

“These networks evolve themselves through generations and make themselves smaller to be able to survive in these environments,” said Mohammad Javad Shafiee, a systems design engineering research professor at Waterloo and the technology’s co-creator.

In work recently presented during the International Conference on Computer Vision in Venice, Italy, the researchers achieved a 200-fold reduction in the size of deep-learning AI software used for a particular object recognition task.

When put on a chip and embedded in a smartphone, such compact AI could run its speech-activated virtual assistant and other intelligent features, greatly reducing data usage and operating without internet service.

Other potential applications range from use in low-cost drones and smart grids, to surveillance cameras and manufacturing plants, where there are significant issues around streaming sensitive or proprietary data to the cloud.

Wong and Shafiee, who have co-founded a company called DarwinAI to commercialize their efficient AI software, were “amazed” at the results when they first attempted their approach to evolving deep-learning AI about three years ago.

“We are researchers, so we explore many different things,” said Shafiee. “And if it works, we keep going and push harder.”

Related Articles Read More >

8 reasons all is not well in GenAI land
Efficiency first: Sandia’s new director balances AI drive with deterrent work
GreyB’s AI-driven Slate offers single search across 160 million patents, 264 million papers
Webinar offers guide to R&D data clarity with perspectives from a Big Pharma, global CRO, space‑station lab, and immune-system-in-a-dish startup
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE