Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Noise in Microwave Amplifier Limited by Quantum Heat Particles

By R&D Editors | November 11, 2014

Cross sectional image of an ultra-low noise transistor. Electrons, accelerated in the high mobility channel under the 100 nanometer gate, collide and dissipate heat that fundamentally limits the noise performance of the transistor. Illustration: Lisa Kinnerud and Moa Carlsson, Krantz NanoArt.As part of an international collaboration, scientists at Chalmers University of Technology in Sweden have demonstrated how noise in a microwave amplifier is limited by self-heating at very low temperatures. The results will be published in the prestigious journal Nature Materials. The findings can be of importance for future discoveries in many areas of science such as quantum computers and radio astronomy.

Many significant discoveries in physics and astronomy are dependent upon registering a barely detectable electrical signal in the microwave regime. A famous example of this was the discovery of cosmic background radiation that helped confirm the Big Bang theory. Another example is the detection of data from scientific instruments in space missions on their way to distant planets, asteroids or comets.

Faint microwave signals are detected by transistor-based low-noise amplifiers. Researchers at Chalmers University of Technology have now optimized indium phosphide transistors using a special process for this purpose. A spin-off company from Chalmers, Low Noise Factory, designs and packages amplifier circuits.

“Cooling the amplifier modules to -260 degrees Celsius enables them to operate with the highest signal-to-noise ratio possible today,” says Jan Grahn, professor of microwave technology at Chalmers. “These advanced cryogenic amplifiers are of tremendous significance for signal detection in many areas of science, ranging from quantum computers to radio astronomy.”

Using a combination of measurements and simulations, the researchers investigated what happens when a microwave transistor is cooled to one tenth of a degree above absolute zero (-273 degrees Celsius). It was thought that noise in the transistor was limited by so-called hot electrons at such extreme temperatures. However, the new study shows that the noise is actually limited by self-heating in the transistor.

Electron microscope image of an indium phosphide high electron mobility transistor (InP HEMT). The region affected by the self-heating process is highlighted in the cross section of the InP HEMT. Illustration: ChalmersSelf-heating is associated with phonon radiation in the transistor at very low temperatures. Phonons are quantum particles that describe the thermal conductivity of a material. The results of the study are based on experimental noise measurements and simulations of phonons and electrons in the semiconductor transistor at low temperatures.

“The study is important for the fundamental understanding of how a transistor operates close to absolute zero temperature, and also how we should design even more sensitive low-noise amplifiers for future detectors in physics and astronomy,” explains Grahn.

The research has been performed as part of an international exchange between Chalmers University of Technology in Sweden and the California Institute of Technology. Co-authors are the University of Salamanca and the Swedish company Low Noise Factory. The study was conducted at the Gigahertz Centre, a joint venture between Chalmers, research institutes, company partners, and the Swedish Governmental Agency for Innovation Systems (Vinnova).

Release Date: November 10, 2014
Source: Chalmers University of Technology 

Related Articles Read More >

TSMC’s N3P hits mass production, with N3X customer sampling slated for Q3–Q4 2025a
7 major R&D developments this week: Tariff uncertainty persists, Pfizer sells campus, Scania acquires Northvolt unit
While Trump tariffs spare phones/PCs, R&D could faces GPU cost pressures
Why IBM predicts quantum advantage within two years
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE