Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Researchers Identify Gene Variant Associated With Cellular Aging

By Boston University School of Medicine | March 22, 2019

It is well known that psychiatric stress is associated with accelerated aging. Now, a new study shows that a gene mutation interacts with multiple types of psychiatric stress including post-traumatic stress disorder (PTSD), pain and sleep disturbances in association with cellular aging.

The klotho gene, which is named for the Greek Goddess Clotho who “spins the thread of life,” has been connected with longevity and a variety of age-related conditions and diseases. This is the first time it has been shown to be a marker for accelerated cellular aging in humans.

The study involved 309 U.S. military veterans, of which a large percentage experienced PTSD, who had been deployed to the wars in Iraq and/or Afghanistan. All participants gave blood samples for genetic and metabolic analyses, and were evaluated for psychiatric conditions. They also underwent magnetic resonance imaging (MRI) to examine brain structure and function.

The researchers found that those with a particular klotho genotype who also had more severe PTSD symptoms were the ones who showed the strongest evidence of accelerated cellular aging. “We know that stress increases the likelihood of declining health. Our results suggest that klotho could be one factor that coordinates this decline across both the periphery and central nervous system, making individuals with substantial psychiatric stress more vulnerable to its pathological effects,” explained corresponding author Erika J. Wolf, PhD, a clinical research psychologist at the National Center for PTSD at VA Boston Healthcare System.

According to the researchers, this study points to new directions that could be useful for slowing or reversing accelerated aging and thereby stemming the tide of stress- and age-related health decline. “These results help us to understand the pathophysiology of accelerated aging and raise the possibility that klotho could potentially be a new therapeutic target for protecting against age-related inflammation, metabolic dysfunction, and loss of neural integrity,” added Wolf who is also associate professor of psychiatry at Boston University School of Medicine.

The researchers hope to identify the pathophysiology of stress-related accelerated cellular aging and then develop new treatments that target the implicated pathways. They believe this could eventually reverse or slow the pace of cellular aging and reduce the risk for premature onset of age-related health decline in stressed populations.

Related Articles Read More >

Eli Lilly facility
9 R&D developments this week: Lilly builds major R&D center, Stratolaunch tests hypersonic craft, IBM chief urges AI R&D funding
professional photo of wooly mammoth in nature --ar 2:1 --personalize sq85hce --v 6.1 Job ID: 47185eaa-b213-4624-8bee-44f9e882feaa
Why science ethicists are sounding skepticism and alarm on ‘de-extinction’
ALAFIA system speeds complex molecular simulations for University of Miami drug research
3d rendered illustration of the anatomy of a cancer cell
Funding flows to obesity, oncology and immunology: 2024 sales data show where science is paying off
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE