Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • Educational Assets
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Semiconductor Computers Could Be a Million Times Faster

By University of Michigan | May 4, 2018

A technique to manipulate electrons with light could bring quantum computing up to room temperature.

A team of researchers in Germany and at the University of Michigan have demonstrated how infrared laser pulses can shift electrons between two different states, the classic 1 and 0, in a thin sheet of semiconductor.

“Ordinary electronics are in the range of gigahertz, one billion operations per second. This method is a million times faster,” says Mackillo Kira, U-M professor of electrical engineering and computer science.

He led the theoretical part of the study, to be published in the journal Nature, collaborating with physicists at the University of Marburg in Germany. The experiment was done at the University of Regensburg in Germany.

Quantum computing could solve problems that take too long on conventional computers, advancing areas such as artificial intelligence, weather forecasting and drug design. Quantum computers get their power from the way that their quantum-mechanical bits, or qubits, aren’t merely 1s or 0s, but they can be mixtures — known as superpositions — of these states.

“In a classical computer, each bit configuration must be stored and processed one by one while a set of qubits can ideally store and process all configurations with one run,” Kira says.

This means that when you want to look at a bunch of possible solutions to a problem and find the best fit, quantum computing can get you there a lot faster.

But qubits are hard to make because quantum states are extremely fragile. The main commercial route, pursued by companies such as Intel, IBM, Microsoft and D-Wave, uses superconducting circuits — loops of wire cooled to extremely cold temperatures (-321°F or less), at which the electrons stop colliding with each other and instead form shared quantum states through a phenomenon known as coherence.

Rather than finding a way to hang onto a quantum state for a long time, the new study demonstrates a way to do the processing before the states fall apart.

“In the long run, we see a realistic chance of introducing quantum information devices that perform operations faster than a single oscillation of a lightwave,” says Rupert Huber, professor of physics at the University of Regensburg, who led the experiment.  “The material is relatively easy to make, it works in room temperature air, and at just a few atoms thick, it is maximally compact.”

The material is a single layer of tungsten and selenium in a honeycomb lattice. This structure produces a pair of electron states known as pseudospins. It’s not the spin of the electron (and even then, physicists caution that electrons are not actually spinning), but it is a sort of angular momentum. These two pseudospins can encode the 1 and 0.

An artist’s rendering of a pulse of circularly polarized light hitting a 2-D semiconductor, putting the electrons into a pseudospin state that could store information as part of a new, faster computing technology. Image: Stephen Alvey, Michigan Engineering

Huber’s team prodded electrons into these states with quick pulses of infrared light, lasting just a few femtoseconds (quintillionths of a second). The initial pulse has its own spin, known as circular polarization, that sends electrons into one pseudospin state. Then, pulses of light that don’t have a spin (linearly polarized) can push the electrons from one pseudospin to the other — and back again.

By treating these states as ordinary 1 and 0, it could be possible to create a new kind of “lightwave” computer with the million-times-faster clock speeds that Kira mentioned. The first challenge along this route will be to use a train of laser pulses to “flip” the pseudospins at will.

But the electrons can also form superposition states between the two pseudospins. With a series of pulses, it should be possible to carry out calculations until the electrons fall out of their coherent state. The team showed that they could flip a qubit quickly enough to execute a string of operations — basically, it’s fast enough to work in a quantum processor.

Moreover, the electrons are constantly sending out light that makes it easy to read a qubit without disturbing its delicate quantum state. Clockwise circular polarization indicates one pseudospin state, counterclockwise the other.

The next steps toward quantum computing will be to get two qubits going at once, near enough to one another that they interact. This could involve stacking the flat sheets of semiconductor or using nanostructuring techniques to fence off qubits within a single sheet, for example.

The study, “Lightwave valleytronics in a monolayer of tungsten diselenide,” was funded by the European Research Council and the German Research Foundation.

Source: University of Michigan

Related Articles Read More >

Stargate’s $500B bet could force data-center and 1.2 GW grid rethink
Compact AI model lets popular ESP32 microcontroller predict network failures and memory leaks in real time
TSMC’s N3P hits mass production, with N3X customer sampling slated for Q3–Q4 2025a
7 major R&D developments this week: Tariff uncertainty persists, Pfizer sells campus, Scania acquires Northvolt unit
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • Educational Assets
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE