Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Unravelling the Mystery of Ice Ages Using Ancient Molecules

By Cardiff University | March 12, 2018

Credit: Cardiff University

Researchers from Cardiff University have revealed how sea ice has been contributing to the waxing and waning of ice sheets over the last million years.

In a new study published in the journal Nature Communications, the team have shown for the first time that ice ages, occurring every 100,000 years, are accompanied by a rapid build-up of sea ice in the Earth’s oceans.

Our planet’s ice ages used to occur at intervals of every 40,000 years, which made sense to scientists as the Earth’s seasons vary in a predictable way, with colder summers occurring at these intervals. However there was a point, about a million years ago, called the ‘Mid-Pleistocene transition’, in which the ice age intervals changed from every 40,000 years to every 100,000 years.

The reason why ice ages occur at these timescales has been a mystery to scientists for a long time.

By tracking molecules produced by tiny marine algae preserved in ocean sediments, the team have been able to reconstruct sea-ice conditions during the Mid-Pleistocene transition.

Their results showed that at the same time as the cycles of ice ages changed from 40,000 years to 100,000 years there was a distinct increase in sea ice extent and a change in the rhythm of sea ice build-up across climate cycles.

“Prior to the Mid-Pleistocene transition, sea ice build-up and decay during ice ages was more gradual, whereas in the late Pleistocene, when the cyclicity of ice ages changed, we observed conditions characterised by a prominent short-lived peak in sea ice extent during late ice ages,” said Henrieka Detlef, a postgraduate researcher at Cardiff University School of Earth and Ocean Sciences who led the study.

With less water evaporating into the atmosphere, there would be less moisture being transported to continental glaciers which, in turn, would cause them to retreat and help in the transition from an ice age to a warm period.

“It’s clear that sea ice plays a fundamental role in the transition from an ice age into a warm stage every 100,000 years,” Detlef continued.

“Understanding the interactions of sea ice with the regional ecosystem and oceanography is particularly important with respect to anthropogenic climate change and a rapidly shrinking sea ice cover in the Arctic Ocean. Our study is an important step forward in understanding the role of sea ice for long-term climate change.”

Related Articles Read More >

Floating solar mats clean polluted water — and generate power
New AI model offers faster, adaptive CO₂ retrieval from satellite data
8 major R&D moves this week: Samsung invests record $24B while Porsche cuts 3,900 jobs
Ex-Google AI team launches “Generation,” an AI-driven fragrance venture
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE