Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

UV Sensor for Wearables

By Tohoku University | April 21, 2017

Mass production technology for silicon based ultraviolet (UV) light sensors, suitable for smartphones and wearable devices in the Internet of Things (IoT) era, has been jointly developed by a research team at Tohoku University and SII Semiconductor Corp., a semiconductor manufacturer at Seiko Instruments Group.

In recent years, there’s been growing interest within the healthcare community in the prevention of sunburns and skin blemishes. As such, easy measurement of UV light through the use of a smartphone or a wearable device could be of great benefit to healthcare and aesthetic medicine. In fact, the need to measure invisible UV light is also increasing in industrial fields, where equipment such as UV curing machines and printers using UV curable ink are being used more frequently now than ever before.

The new UV light sensor technology, developed by the research team led by Professor Shigetoshi Sugawa and Associate Professor Rihito Kuroda at Tohoku University’s Graduate School of Engineering, uses only silicon semiconductors to selectively detect and measure the light intensity of UV-A (315~400nm) and UV-B (280~315nm) light wavebands. These are the wavebands to which sunburns and skin blemishes are attributed. Versatile silicon semiconductor sensors are more adaptive to integrations with circuits and add more functions than compound semiconductor UV sensors.

Conventionally, silicon photodiode UV light sensors employ optical filters that cut off undesired visible light wavebands. By utilizing the differential spectral response of silicon photodiodes with high and low UV light sensitivities, the researchers were able to develop a sensor with UV range selective sensing capabilities without employing an optical filter.

The optical filter-less structure obtains a higher sensitivity by preventing a decrease of incident UV light intensity to the sensor.

Sugawa and Kuroda had previously developed a silicon photodiode technology providing 190~1100nm wide spectral response and high performance resistance against UV light irradiation. They did this through the JST SENTAN-project which ran from 2011 to 2013.

That silicon photodiode technology has now been applied to the mass production technology of the UV light sensors, which utilizes the newly introduced differential spectral response method. The developed UV light sensors are then loaded to small transparent resin packages with little constraints for assembly, which makes them suitable for use in smartphones and wearable devices. It is expected that anyone can detect and measure UV light using this newly developed technology.

SII Semiconductor Corp. plans to start shipments of the products in spring 2018.

Source: Tohoku University

Related Articles Read More >

Stargate’s $500B bet could force data-center and 1.2 GW grid rethink
Compact AI model lets popular ESP32 microcontroller predict network failures and memory leaks in real time
TSMC’s N3P hits mass production, with N3X customer sampling slated for Q3–Q4 2025a
7 major R&D developments this week: Tariff uncertainty persists, Pfizer sells campus, Scania acquires Northvolt unit
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE