Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

3D-printed air: a cool solution to help tackle global warming

By Heather Hall | June 18, 2021

BVN Architecture and the University of Technology Sydney (UTS), Australia, have teamed up to design the world’s first robotically 3D-printed air-diffusion system, called ‘Systems Reef 2’ (SR2).

SR2 reinvents air distribution: replacing steel with recycled plastic, square corners with aerodynamic curves and large vents with fine pores.

The building sector is responsible for nearly 40% of annual global greenhouse gas emissions and SR2 tackles this problem head on. It offers a 90% reduction in embodied carbon when compared to existing systems. Made from recycled plastic waste, it can be fully recycled at the end of its life, exemplifying circular economy principles.

SR2 is designed to fit into existing air-conditioning units, replacing the traditional steel duct work that has barely changed in design over the past 50 years.

Often in architecture the spotlight is on the environmental impact of the materials and structure of buildings, said Ninotschka Titchkosky, co-CEO of BVN Architecture. “However, at BVN we are also mindful that the electrical, plumbing and mechanical systems inside a building contribute up to 33% of the total carbon cost of a typical office building. This means if we are to be serious about reducing the carbon impact of building design, we must also rethink how we deliver air in buildings. This new system – SR2 – is really about this. It’s 3D-printing air.”

“Ninety-eight percent of all buildings are existing, therefore if we are to address climate change we need to adapt and reinvent our existing buildings to ensure they remain relevant,” said Titchkosky.

The invention makes use of the unique properties of advanced manufacturing. Robotically 3D-printed and computationally designed, the system is adaptable and customizable.

“As a society we are facing significant challenges and we can’t afford to continue building in the same way we do now,” said Associate Professor Tim Schork from the School of Architecture at UTS. “What is required is a fundamental rethink and radical transformation of our current practices. We need to develop new approaches to design, materials and construction.”

To create the components, the team programmed an industrial robot to strategically place thousands of tiny tailor-made pores in elongated tubes that slot together to create a networked system.

“Rather than dumping air at routine intervals across a floorplan, this design distributes the air evenly: meaning that there is a more consistent air temperature and flow and nobody needs to sit under the cold draft of a high-powered vent,” said Schork.

But the design isn’t just about comfort. The distinctive organic curves are based on detailed computer modelling that demonstrates that the curved design significantly reduces energy loss and encourages air flow.

“Air doesn’t move in right-angles, so it’s not logical to design an air distribution system with square corners,” said Schork.

SR2 is a model example of a successful industry and university research collaboration, with each bringing unique insights, knowledge and expertise.

“Only by working closely together were we able to design and fabricate this unique system,” said Schork.

For both Schork and Titchkosky there is an urgency to shifting existing building practices, by harnessing advanced technology and developing the digital design tools and manufacturing systems necessary to create a decarbonized building culture.

“We have one of the highest levels of waste out of OECD countries, and as architects, it’s really important that we’re making a positive contribution and beginning to influence the industry to change,” said Titchkosky.

SR2 will launch at the exhibition and event series Printed City. For more information, visit thefifthestate.com.au/printed-city-event/

 

 

 

 

 

Related Articles Read More >

Floating solar mats clean polluted water — and generate power
New AI model offers faster, adaptive CO₂ retrieval from satellite data
8 major R&D moves this week: Samsung invests record $24B while Porsche cuts 3,900 jobs
Ex-Google AI team launches “Generation,” an AI-driven fragrance venture
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE