Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Atomic ‘Re-Packaging’ Behind Metallic Glass Mystery

By Hokkaido University | March 29, 2017

The high voltage electron microscope at Hokkaido University was used in the study. Source: Hokkaido University

An international collaboration involving Hokkaido University’s high-voltage electron microscope has solved a puzzle about the atomic structure of metallic glasses that has baffled scientists for four decades.

Unlike crystalline alloys, atoms in metallic glasses are randomly organized, a structure called amorphous. This makes them stronger, more flexible and resistant to corrosion. Due to these excellent physical properties, they are used in sports equipment, medical devices and electricity transformers. But improving their properties requires a better understanding of their atomic structure.

In 1976, researchers used a technique, called differential scanning calorimetry, to measure the difference in the amount of heat required to increase the temperature of metallic glass alloys made of palladium, nickel and phosphorous (Pd-Ni-P). As they heated the Pd-Ni-P alloys, they found a thermodynamic inconsistency in the resulting curve that they couldn’t properly explain, but it must have had to do with their structures.

Now, forty years later, an international research consortium led by City University of Hong Kong developed a method that combined various measuring techniques, allowing them to directly correlate changes in the structure of Pd-Ni-P metallic glass to temperature changes.

High-energy synchrotron X-ray diffraction was carried out while constant heating was simultaneously applied to Pd-Ni-P metallic glass at Argonne National Laboratory in the US. Separately, small-angle neutron scattering was performed at the OPAL reactor at the Australian Nuclear Science and Technology Organization. This was complemented by obtaining high-resolution images and electron diffraction patterns of the material’s atomic structure using Hokkaido University’s high voltage electron microscope.

The combined measurements revealed that Pd-Ni-P metallic glass has a hidden amorphous phase within a certain temperature range and the thermodynamic inconsistency is the consequence of a phase transition. “The phase transition was found to involve the changes in how atom clusters were packed together. The atomic structure underwent significant changes over the medium-range length scales as large as 18Å,” explains Dr. Tamaki Shibayama of Hokkaido University.

His collaborator Dr. Seiichi Watanabe added “This newly verified property appears to be linked to some metals’ ability to form glass, which could allow us to manipulate their structures to develop larger and stronger novel materials.”

Related Articles Read More >

KIST carbon nanotube supercapacitor holds capacity after 100,000 cycles
A new wave of metalworking lets semiconductor crystals bend and stretch
LLNL deposits quantum dots on corrugated IR chips in a single step
KATRIN inauguration photo form 2018
Neutrinos pinned below 0.45 eV; KATRIN halves the particle’s mass ceiling
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE