Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • Educational Assets
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Bendable Crystals Tie Current Thinking in Knots

By University of Queensland | August 29, 2017

Queensland researchers have shown that single crystals, typically thought of as brittle and inelastic, are flexible enough to be bent repeatedly and even tied in a knot.

Researchers from Queensland University of Technology (QUT) and The University of Queensland (UQ) determined and measured the structural mechanism behind the elasticity of the crystals down to the atomic level.

Their work, published in Nature Chemistry, opens the door for the use of flexible crystals in applications in industry and technology. 

The research was led by ARC Future Fellows Associate Professor Jack Clegg in UQ’s School of Chemistry and Molecular Biosciences and Associate Professor John McMurtrie in QUT’s Science and Engineering Faculty. 

Associate Professor McMurtrie said the results challenged conventional thinking about crystalline structures.

“Crystals are something we work with a lot – they’re typically grown in small blocks, are hard and brittle, and when struck or bent they crack or shatter,” he said.

“While it has previously been observed that some crystals could bend, this is the first study to examine the process in detail.

“We found that the crystals exhibit traditional characteristics of not only hard matter, but soft matter like nylon.”

The researchers grew bendable crystals about the width of a fishing line and up to five centimetres long from a common metal compound – copper (II) acetylacetonate. They mapped changes in the atomic scale structure when the crystals were bent using X-ray measurements performed at the Australian Synchrotron.

Crystals from six other structurally related compounds, some containing copper and some other metals, were also tested and found to be flexible.  

Associate Professor Clegg said the experiments showed that the crystals can be repeatedly bent and return quickly to their original shape with no signs of breaking or cracking when the force bending them is removed.

“Under strain the molecules in the crystal reversibly rotate and reorganise to allow the compression and expansion required for elasticity and still maintain the integrity of the crystal structure,” he said.

“The ability of crystals to bend flexibly has wide-ranging implications in industry and technology.

“Crystallinity is a property that underpins a variety of existing technologies, including lasers and semi-conductors which are used in almost every electronic device, from DVD players to mobile phones and computers.

“But the hardness that makes them suitable for high-strength industrial components limits their use in other technologies. Flexible crystals like these could lead to new hybrid materials for numerous applications, from components of planes and spacecraft to parts of motion or pressure sensors and electronic devices.”

Associate Professor McMurtrie said the method the researchers have developed to measure the changes during bending could also be used to explore flexibility in any other crystals.

“This is an exciting prospect given that there are millions of different types of crystals already known and many more yet to be discovered,” he said.

“Bending the crystal changes its optical and magnetic properties, and our next step is to explore these optical and magnetic responses with a view to identifying applications in new technologies.”

The research was funded by an ARC Discovery Grant and supported by the Australian Synchrotron. Research collaborators and co-authors of the study are: Anna Worthy, Professor Cheng Yan, and Yanan Xu (QUT) and Dr Arnaud Grosjean, Dr Michael Pfrunder and Dr Grant Edwards (UQ).

Related Articles Read More >

Marine-biodegradable polymer is as strong as nylon
Unilever R&D head lifts lid on AI, robots and beating the ‘grease gap’
First CRISPR-edited spider spins red fluorescent silk
KIST carbon nanotube supercapacitor holds capacity after 100,000 cycles
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • Educational Assets
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE