Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Mystery Behind Tin Oxide Gas Sensors Solved

By Geoff Thornton, London Centre for Nanotechnology | January 10, 2018

An international team of scientists, including those from the London Centre for Nanotechnology at University College London, have solved the structure of a gas sensing surface of tin dioxide, opening the way to advanced device design. The basis for the gas sensing as well other applications of tin oxide is the reducibility of the oxide, which allows it to readily and reversibly release oxygen in the presence of reactants such as carbon monoxide or hydrocarbons, and to facilitate adsorption of molecules such as oxygen. The changes in electrical conductivity of this semiconductor resulting from these surface processes are the basis for the material’s gas-sensing characteristics. Because of this, it has long been a goal of fundamental research to characterize the structural, physical, and chemical properties of tin oxide surfaces.

The (110) plane of tin oxide, the mineral cassiterite, is the most stable under ambient conditions and therefore will be the most abundant termination of the gas sensor. This is the surface that the team investigated with a number of experimental and theoretical techniques, including those available at the Diamond Light Source at Harwell Laboratory.

The structure of the tin dioxide surface determined in this work along with a simulation of the scanning tunneling microscope image.

The lead author of the work, Lindsay Merte, comments, “The tin oxide (4 × 1) termination is one of a handful of gas sensor related surfaces to have its quantitative structure determined. It can now serve as a useful model for fundamental studies of tin oxide surface chemistry and a basis for further studies that should help resolve the complex behavior of the surface under different conditions.”

Considering the importance of tin oxide surface electrical conductivity in gas-sensing applications, it is a natural question whether upon formation of the (4 × 1) termination the surface becomes metallic. To address this, we have evaluated the electronic properties of the upper layers in our structure. This shows that the surface remains semiconducting, which is a necessary requirement for gas sensing.

The work has recently been published in Physical Review Letters; Structure of the SnO2(110)-(4×1) Surface, Lindsay R. Merte, Mathias S. Jørgensen, Katariina Pussi, Johan Gustafson, Mikhail Shipilin, Andreas Schaefer, Chu Zhang, Jonathan Rawle, Chris Nicklin, Geoff Thornton, Robert Lindsay, Bjørk Hammer, and Edvin Lundgren

Source: London Centre for Nanotechnology

Related Articles Read More >

Floating solar mats clean polluted water — and generate power
Nanodots enable fine-tuned light emission for sharper displays and faster quantum devices
New photon-avalanching nanoparticles could enable next-generation optical computers
New “nose-computer interface” aims to upgrade Rover’s nose for better drug detection methods
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE