Research & Development World

  • Home Page
  • Topics
    • Aerospace
    • Archeology
    • Automotive
    • Biotech
    • Chemistry
    • COVID-19
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Market Pulse
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
      • Software
    • Semiconductors
  • 2021 R&D 100 Award Winners
    • R&D 100 Awards
    • 2020 Winners
    • Winner Archive
  • Resources
    • Digital Issues
    • Podcasts
    • Subscribe
  • Global Funding Forecast
  • Webinars

Nanotherapy Breakthrough Destroys Tumors with Fewer Side-Effects

By Leiden University | January 29, 2018

In nanotherapy, particles measuring between a nanometer and a micrometer are used to deliver medicines to specific locations in the body, for example to destroy tumors with far fewer side-effects than traditional chemotherapy. A recurrent problem in developing nanotherapy is that the liver often breaks down the nanoparticles prematurely. Consequently, the particles only rarely reach their intended destination. To date, researchers believed this was the work of clean-up cells — so-called Kupffer cells — in the liver.

In joint research carried out with the Hubrecht Institute and the University of Basle, Jeroen Bussmann, chemical biologist at Leiden University, discovered that cells in the blood vessel walls of the liver (endothelial cells) often play a much greater role in this process. Proteins on the surface of these cells recognize the nanoparticles and eliminate them. Blocking these proteins means that the endothelial cells will no longer break down the nanoparticles, which then remain in the blood for longer. This is crucial if medicines are to be transported to their intended targets in the body.

Bussmann used zebrafish larvae for his research. “The advantage of using these larvae is that they are transparent, so we can follow the nanoparticles as they move through the blood vessels using a microscope,” he explains. Bussmann blocked the endothelial cells by giving the zebrafish larvae a special polymer (a long, interlinked molecule). “When this polymer binds to the proteins on the endothelial cells, they no longer recognize the nanoparticles,” he explains.

The other clean-up cells in the liver (Kupffer cells) mainly recognize particles larger than 100 nanometers. The idea was that by using smaller nanoparticles in combination with the special polymer, there were no more cells in the liver that could remove the nanoparticles. This worked: particles administered in this way remain in the blood stream without being broken down.

The point in time that Bussmann was certain that the endothelial cells had actually ingested the nanoparticles, was when he administered nanoparticles containing a toxic substance to the fish larvae: this substance only acts within cells and not outside them. So, when only the endothelial cells died, he knew that this was because they had ingested the nanoparticles.

Using the zebrafish larvae, Bussmann also discovered precisely which protein in the endothelial cells binds to the particles, namely Stabilin-2. Removing the gene for Stabilin-2 also resulted in much lower breakdown of the nanoparticles. Bussmann is now aiming to develop a molecule that binds specifically to  Stabilin-2. It will then be possible to inhibit the breakdown function of the cells highly specifically, without the liver losing part of its natural function.

Bussmann also wants to explore how exactly the protein binds to the particles and how the endothelial cells subsequently ingest them. “We want to understand every step in the process so that we can ultimately produce nanoparticles that can deliver medicines not only to the liver but to every type of cell in the body.”

Source: Leiden University

Related Articles Read More >

Breakthrough paves way for photonic sensing at the ultimate quantum limit
TROY awarded $161K National Science Foundation grant
NanoScientific Symposium 2022 now open for registration
Seeing more deeply into nanomaterials
2021 R&D Global Funding Forecast

Need R&D World news in a minute?

We Deliver!
R&D World Enewsletters get you caught up on all the mission critical news you need in research and development. Sign up today.
Enews Signup

R&D World Digital Issues

February 2020 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R& magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • 2021 Global Funding Forecast

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • Home Page
  • Topics
    • Aerospace
    • Archeology
    • Automotive
    • Biotech
    • Chemistry
    • COVID-19
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Market Pulse
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
      • Software
    • Semiconductors
  • 2021 R&D 100 Award Winners
    • R&D 100 Awards
    • 2020 Winners
    • Winner Archive
  • Resources
    • Digital Issues
    • Podcasts
    • Subscribe
  • Global Funding Forecast
  • Webinars