Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • 2025 R&D 100 Award Winners
    • 2025 Professional Award Winners
    • 2025 Special Recognition Winners
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
  • Resources
    • Research Reports
    • Digital Issues
    • Educational Assets
    • R&D Index
    • Subscribe
    • Video
    • Webinars
    • Content submission guidelines for R&D World
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

NASA’s Curiosity Finds Mineral Match on Mars

By R&D Editors | November 5, 2014

This image shows the first holes drilled by NASA's Mars rover Curiosity at Mount Sharp. The loose material near the drill holes is drill tailings and an accumulation of dust that slid down the rock during drilling. Image Credit: NASA/JPL-Caltech/MSSSReddish rock powder from the first hole drilled into a Martian mountain by NASA’s Curiosity rover has yielded the mission’s first confirmation of a mineral mapped from orbit.

“This connects us with the mineral identifications from orbit, which can now help guide our investigations as we climb the slope and test hypotheses derived from the orbital mapping,” says Curiosity Project Scientist John Grotzinger, of the California Institute of Technology in Pasadena.

Curiosity collected the powder by drilling into a rock outcrop at the base of Mount Sharp in late September. The robotic arm delivered a pinch of the sample to the Chemistry and Mineralogy (CheMin) instrument inside the rover. This sample, from a target called “Confidence Hills” within the “Pahrump Hills” outcrop, contained much more hematite than any rock or soil sample previously analyzed by CheMin during the two-year-old mission. Hematite is an iron-oxide mineral that gives clues about ancient environmental conditions from when it formed.

In observations reported in 2010, before selection of Curiosity’s landing site, a mineral-mapping instrument on NASA’s Mars Reconnaissance Orbiter provided evidence of hematite in the geological unit that includes the Pahrump Hills outcrop. The landing site is inside Gale Crater, an impact basin about 96 miles in diameter with the layered Mount Sharp rising about three miles high in the center.

“We’ve reached the part of the crater where we have the mineralogical information that was important in selection of Gale Crater as the landing site,” says Ralph Milliken of Brown University. He is a member of Curiosity’s science team and was lead author of that 2010 report in Geophysical Research Letters identifying minerals based on observations of lower Mount Sharp by the orbiter’s Compact Reconnaissance Imaging Spectrometer for Mars (CRISM). “We’re now on a path where the orbital data can help us predict what minerals we’ll find and make good choices about where to drill. Analyses like these will help us place rover-scale observations into the broader geologic history of Gale that we see from orbital data.”

This image from NASA's Curiosity rover shows a sample of powdered rock extracted by the rover's drill from the "Confidence Hills" target -- the first rock drilled after Curiosity reached the base of Mount Sharp in September 2014. Image Credit: NASA/JPL-Caltech/MSSSMuch of Curiosity’s first year on Mars was spent investigating outcrops in a low area of Gale Crater called “Yellowknife Bay,” near the spot where the rover landed. The rover found an ancient lakebed. Rocks there held evidence of wet environmental conditions billions of years ago that offered ingredients and an energy source favorable for microbial life, if Mars ever had microbes. Clay minerals of interest in those rocks at Yellowknife Bay had not been detected from orbit, possibly due to dust coatings that interfere with CRISM’s view of them.

The rover spent much of the mission’s second year driving from Yellowknife Bay to the base of Mount Sharp. The hematite found in the first sample from the mountain tells about environmental conditions different from the conditions recorded in the rocks of Yellowknife Bay. The rock material interacted with water and atmosphere to become more oxidized.

The rocks analyzed earlier also contain iron-oxide minerals, mostly magnetite. One way to form hematite is to put magnetite in oxidizing conditions. The latest sample has about eight percent hematite and four percent magnetite. The drilled rocks at Yellowknife Bay and on the way to Mount Sharp contain at most about one percent hematite and much higher amounts of magnetite.

“There’s more oxidation involved in the new sample,” says CheMin Deputy Principal Investigator David Vaniman of the Planetary Science Institute in Tucson, Ariz.

The sample is only partially oxidized, and preservation of magnetite and olivine indicates a gradient of oxidation levels. That gradient could have provided a chemical energy source for microbes.

The Pahrump Hills outcrop includes multiple layers uphill from its lowest layer, where the Confidence Hills sample was drilled. The layers vary in texture and may also vary in concentrations of hematite and other minerals. The rover team is now using Curiosity to survey the outcrop and assess possible targets for close inspection and drilling.

This side-by-side comparison shows the X-ray diffraction patterns of two different samples collected from rocks on Mars by NASA's Curiosity rover. The images present data obtained by Curiosity's Chemistry and Mineralogy instrument (CheMin). Image Credit: NASA/JPL-CaltechThis view shows the path and some key places in a survey of the "Pahrump Hills" outcrop by NASA's Curiosity Mars rover in autumn of 2014. The outcrop is at the base of Mount Sharp within Gale Crater. Image Credit: NASA/JPL-Caltech/MSSSThe mission may spend weeks to months at Pahrump Hills before proceeding farther up the stack of geological layers forming Mount Sharp. Those higher layers include an erosion-resistant band of rock higher on Mount Sharp with such a strong orbital signature of hematite, it is called “Hematite Ridge.” The target drilled at Pahrump Hills is much softer and more deeply eroded than Hematite Ridge.

Another NASA Mars rover, Opportunity, made a key discovery of hematite-rich spherules on a different part of Mars in 2004. That finding was important as evidence of a water-soaked history that produced those mineral concretions. The form of hematite at Pahrump Hills is different and is most important as a clue about oxidation conditions. Plenty of other evidence in Gale Crater has testified to the ancient presence of water.

NASA’s Jet Propulsion Laboratory, a division of Caltech in Pasadena, manages the Mars Reconnaissance Orbiter and Mars Science Laboratory projects for NASA’s Science Mission Directorate in Washington, and built the Curiosity rover. The JPL is home to the Spacecraft Assembly Facility, a Class 10,000 ISO 7 cleanroom with horizontal airflow and return. NASA’s Ames Research Center, Moffett Field, Calif., developed CheMin and manages instrument operations. The Johns Hopkins University Applied Physics Laboratory, Laurel, Md., developed and operates CRISM.

Release Date: November 4, 2014
Source: NASA 

Related Articles Read More >

NASA R&D 100 Winner enables high-speed data transfer from space
The Milky Way is glowing: these scientists think dark matter may be the cause
Reusable rocket startup raises $510 million
2025 R&D layoffs tracker: hardware and chips lead the year’s biggest cuts while biopharma pares pipelines
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2025 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Sign up for R&D World’s newsletter
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • 2025 R&D 100 Award Winners
    • 2025 Professional Award Winners
    • 2025 Special Recognition Winners
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
  • Resources
    • Research Reports
    • Digital Issues
    • Educational Assets
    • R&D Index
    • Subscribe
    • Video
    • Webinars
    • Content submission guidelines for R&D World
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE