Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Possible Link Found Between Diabetes and Common White Pigment

By University of Texas at Austin | June 20, 2018

A TiO2 crystal extracted from a T2D pancreas and its electron diffraction pattern. The resulting interference patterns indicate the findings outlined by the study in the journal, Chemical Research in Toxicology.

In a pilot study by a team of researchers at The University of Texas at Austin, crystalline particles of titanium dioxide — the most common white pigment in everyday products ranging from paint to candies — were found in pancreas specimens with Type 2 diabetes, suggesting that exposure to the white pigment is associated with the disease.

Titanium dioxide (TiO2) is not a known constituent of any normal human tissue. Our body normally has plenty of salts and compounds of metallic elements such as sodium, potassium, calcium, iron and magnesium, as well as lesser amounts of other metallic elements like cobalt or molybdenum but not of titanium.

The team examined 11 pancreas specimens, eight of which were from donors who had Type 2 diabetes (T2D) and three from donors who did not. Whereas the three non-diabetic pancreatic tissue specimens contained no detectable TiO2 crystals, the crystals were detected in all of the eight T2D pancreatic tissue specimens. The UT Austin researchers found more than 200 million TiO2 crystallites per gram of TiO2 particles in the specimens from T2D donors but not in the three specimens from non-diabetic donors. They published their findings last month in the journal Chemical Research in Toxicology.

The UT study was led by Adam Heller, professor in the McKetta Department of Chemical Engineering in the Cockrell School of Engineering, a 2007 recipient of the National Medal of Technology and Innovation and a lifelong champion for diabetes research. Heller was a leading member of the teams that designed FreeStyle, the first painless blood-glucose-monitoring system used by millions of people with diabetes worldwide; and the glucose-sensing technology of the FreeStyle Libre system, developed by Abbott Diabetes Care.

“Our initial findings raise the possibility that Type 2 diabetes could be a chronic crystal-associated inflammatory disease of the pancreas, similar to chronic crystal-caused inflammatory diseases of the lung such as silicosis and asbestosis,” Heller said.

In the mid-20th century, titanium dioxide pigment replaced highly toxic lead-based pigments. It became the most commonly used white pigment in paints and in foods, medications, toothpaste, cosmetics, plastics and paper. As a result, annual production of titanium dioxide has increased by 4 million tons since the 1960s.

According to the World Health Organization, the number of people with diabetes has quadrupled during the past four decades, affecting approximately 425 million people, with T2D comprising the majority of recorded cases. Although obesity and an aging population are still considered major factors leading to a rise in T2D cases worldwide, Heller’s study suggests that increased use of titanium dioxide may also be linked to the rapid rise in the number of people suffering from the disease.

“The increased use of titanium dioxide over the last five decades could be a factor in the Type 2 diabetes epidemic,” Heller said. “The dominant T2D-associated pancreatic particles consist of TiO2crystals, which are used as a colorant in foods, medications and indoor wall paint, and they are transported to the pancreas in the bloodstream. The study raises the possibility that humanity’s increasing use of TiO2 pigment accounts for part of the global increase in the incidence of T2D.”

Given the wide-reaching implications of his findings, Heller is keen to repeat the study, but this time using a larger sample. “We have already begun a broader study,” he said. “Our work isn’t over yet.”

Related Articles Read More >

Eli Lilly facility
9 R&D developments this week: Lilly builds major R&D center, Stratolaunch tests hypersonic craft, IBM chief urges AI R&D funding
professional photo of wooly mammoth in nature --ar 2:1 --personalize sq85hce --v 6.1 Job ID: 47185eaa-b213-4624-8bee-44f9e882feaa
Why science ethicists are sounding skepticism and alarm on ‘de-extinction’
ALAFIA system speeds complex molecular simulations for University of Miami drug research
3d rendered illustration of the anatomy of a cancer cell
Funding flows to obesity, oncology and immunology: 2024 sales data show where science is paying off
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE