Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Quantum Optical Micro-Combs Enable Quantum Breakthroughs

By Swinburne University of Technology | February 26, 2019

Integrated ring resonator circuitry that is used to generate quantum optical frequency combs.

Compact quantum devices could be incorporated into laptops and mobile phones, thanks in part to small devices called quantum optical micro-combs.

Quantum optical micro-combs are devices that generate very sharp precise frequencies of light an equal distance apart—a bit like the teeth of a comb. They can enable ultrafast processes and could be an important component of quantum computer systems.

In a review paper covering the development of these devices, Professor David Moss, Director of the Centre for Micro-Photonics (CMP) at Swinburne describes the advances that have been made in making these devices smaller and portable enough to be included on a chip.

“These devices will enable an unprecedented level of sophistication in generating entangled photons on a chip—a key breakthrough that, in my opinion, could very well accelerate the quest of achieving so-called ‘quantum supremacy’—quantum devices that have the ability to perform functions beyond the capability of conventional electronic computers,” says Moss.

A key challenge for quantum science and technology is to develop practical large-scale, systems that can be precisely controlled. Quantum optical micro-combs provide a unique, practical and scalable framework for quantum signal and information processing to help crack the code to ultra-secure telecommunications and greatly advance quantum computing.

Quantum optical micro-combs have achieved record complexity and sophistication in the photon quantum version of a classical computer bit, a QuDit, that can be generated and controlled in the tiny space of a computer chip.

These breakthroughs have shown that compact, highly complex quantum can exist outside of large laboratories, opening the possibility that ultimately quantum devices could be used in laptops and mobile phones, bringing the vision of powerful optical quantum computers for everyday use closer than ever before.

The review, just published in Nature Photonics, was written with co-authors at the INRS-EMT in Canada, the University of Glasgow, Harvard University, Purdue University, Oak Ridge National Laboratory, and NTT in Japan.

Related Articles Read More >

Floating solar mats clean polluted water — and generate power
Nanodots enable fine-tuned light emission for sharper displays and faster quantum devices
New photon-avalanching nanoparticles could enable next-generation optical computers
New “nose-computer interface” aims to upgrade Rover’s nose for better drug detection methods
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE